📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1)中小微企业融资困境与信用风险评估挑战
- 中小微企业的重要性及融资困境:中小微企业是经济增长基础和社会进步重要推动力量,中国政府虽实施诸多政策支持其发展,如增加信贷和降低税费等,但中小微企业在获取融资方面仍面临诸多困难与挑战。中小微企业自身存在信息不透明、“软信息” 获取成本高、抗风险能力弱等问题,易受外界宏观因素影响和冲击,导致信用风险高于其他企业,且具有明显的动态性和突发性特征。
- 信用风险动态性带来的问题:中小微企业信用风险的动态性使得银行等金融机构难以基于静态历史数据对其信用风险进行及时准确评估。同时,信用评分模型误分类导致的经济损失即成本参数会随信用风险动态变化,使得使用信用评分模型进行贷款决策所带来的利润也动态变化,银行无法用最大利润等指标准确评估模型利润,还需承担未来利润不确定性的风险。在成本参数动态变化情况下,准确评估模型利润与风险成为亟待解决的问题。
- 现金流水数据的优势与应用前景:随着数据存储技术发展,银行积累海量现金流水数据,这些数据实时更新、真实可靠且涵盖中小微企业日常运营信息。基于此,可建立企业信用评分模型以缓解信息不对称问题,及时评估中小微企业信用风险,并针对信用风险动态性导致的模型利润不确定性问题建立基于鲁棒的利润指标和风险测度。
(2)基于现金流水数据的信用风险评估方法
- 不确定成本参数下模型利润与风险指标构建
- 指标构建思路:中小微企业信用风险动态变化使银行难以准确估计成本参数及其分布函数。在成本参数不确定下,建立基于鲁棒的期望最小成本指标,给出成本参数分布信息部分可知时信用评分模型利润的保守估计。同时,引入基于鲁棒的条件在险价值衡量模型风险。
- 理论与实证分析:从理论和实证两个层面证明所提出指标与常用模型评价指标之间的关系,为准确评估模型利润与风险提供理论支持。
- 基于现金流水数据的中小微企业信用风险评估
- 破产预测模型建立:针对中小微企业信息不透明和高破产风险等信用特征,建立基于现金流水数据的中小微企业破产预测模型。与传统基于财务数据和实地考察获取的信息相比,现金流水数据具有实时更新、真实可靠且易于获取的优势。
- 考虑交易关系网络特征:主要基于山东省城市商业银行合作联盟有限责任公司提供的海量流水数据提取相应特征,并考虑企业间交易关系和借贷关系对企业运营的影响,在构建模型时纳入企业交易关系网络特征。实验结果表明,流水数据相关特征能显著提升模型预测能力。
- 基于利润与风险的信用评估指标体系的可解释性分析
- 两阶段多目标特征选择算法:基于现金流水的信用评分模型虽能提升预测能力,但增加了特征维度,不利于建立可解释的信用评分模型,且未考虑决策者目标。提出基于过滤法 - 包裹法的两阶段多目标特征选择算法,第一阶段用过滤法除去不相关特征,第二阶段使用基于多目标的特征选择算法同时优化风险和利润,进一步筛选最重要特征。
- 算法效果与价值:实验结果表明,该算法能显著降低特征维度,增加模型可解释性,给决策者提供收益与风险的权衡,使决策者可根据自身风险偏好选择对应特征子集。分析特征子集中的特征重要性,进一步说明交易流水相关特征在提高模型利润和降低模型风险上的重要价值。
(3)研究成果总结与应用前景展望
- 理论层面成果:所提出的模型评价指标充分考虑成本参数信息的不确定性,扩展了基于利润的分类模型评价指标体系,量化了成本参数不确定性导致的模型风险,为信用评估模型的风险管理提供可量化的指导标准。
- 应用层面成果:在 “联盟” 线上测试环境中验证了所提出信用评估模型的有效性和可行性,具有实际应用价值。
- 方法层面成果:提出的两阶段多目标特征选择算法不同于已有特征选择方法,充分考虑银行实际需求,即增加模型可解释性(降维)、提高模型利润和降低模型风险。该算法得到的帕累托非支配解集有利于银行基于自身风险偏好选择合适的特征子集。
序号 | 现金流水金额(万元) | 交易关系网络特征(0 弱,1 强) | 是否破产(0 未破产,1 破产) | |
---|---|---|---|---|
1 | 500 | 1 | 0 | |
2 | 300 | 0 | 1 | |
3 | 400 | 1 | 0 | |
4 | 200 | 0 | 1 | |
5 | 350 | 1 | 0 |
% 划分训练集和测试集(假设 70%为训练集,30%为测试集)
trainRatio = 0.7;
numSamples = size(data, 1);
trainIndices = randperm(numSamples, round(trainRatio * numSamples));
testIndices = setdiff(1:numSamples, trainIndices);
trainData = data(trainIndices, :);
testData = data(testIndices, :);
% 特征提取(假设从现金流水金额和交易关系网络特征中提取新特征)
trainFeatures = [trainData(:, 2), trainData(:, 3)];
testFeatures = [testData(:, 2), testData(:, 3)];
% 构建破产预测模型(假设使用逻辑回归模型进行简单示例)
logisticModel = fitglm(trainFeatures, trainData(:, end), 'binomial');
% 在测试集上进行预测
predictions = predict(logisticModel, testFeatures);
% 计算准确率等评估指标
accuracy = sum(predictions == testData(:, end)) / length(predictions);
disp(['准确率:', num2str(accuracy)]);