区块链技术支持下的金融产品个性化协同推荐系统毕业论文【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

区块链技术作为一种分布式账本技术,以其去中心化、链上信息不可篡改、全网节点信任共治的特点,为金融领域的互联网转型提供了新的思路和技术支持。本文从区块链的技术特点入手,详细分析了区块链技术的分类、特征以及技术原理,探讨了区块链中数据上链的全过程,以及区块链技术通过密码算法、共识机制等技术组合来实现全网节点对上链信息的共识认可,保障了数据的不可篡改性与全网交易的信用共识。

  • 去中心化:区块链技术的核心特点是去中心化。传统的金融系统依赖于中央机构(如银行)来记录和验证交易,而区块链通过分布式网络中的多个节点共同维护一个账本,消除了单一中心的控制,降低了系统故障的风险。
  • 不可篡改性:区块链上的每一笔交易都被记录在一个区块中,每个区块通过哈希值与前一个区块相连,形成一条不可篡改的链。一旦数据被写入区块链,就无法被修改或删除,确保了交易信息的真实性和完整性。
  • 全网节点信任共治:区块链通过共识机制(如工作量证明PoW、权益证明PoS等)确保所有节点对交易信息达成一致。这种机制使得即使在网络中存在恶意节点,也无法篡改交易记录,从而建立了全网的信任机制。
2. 区块链技术在金融领域的具体应用

区块链技术在金融领域的应用广泛,涵盖了银行信贷、支付结算、资产管理等多个方面。本文重点分析了区块链技术在银行信贷等金融领域的具体应用,探讨了区块链技术对传统金融业务优化转型的积极作用。

  • 银行信贷

    • 信用评估:区块链技术可以记录客户的交易历史和信用记录,通过智能合约自动评估客户的信用等级,简化了信用评估流程,提高了评估的准确性和效率。
    • 贷款审批:传统的贷款审批流程繁琐,需要人工审核大量的文件和数据。区块链技术可以通过智能合约自动化审批流程,减少人工干预,提高审批速度,降低操作风险。
    • 风险管理:区块链技术可以实时监控贷款资金的流向,防止资金被挪用或滥用。通过智能合约设定还款计划和违约条款,自动触发还款提醒和违约处理,降低了贷款风险。
  • 支付结算

    • 跨境支付:传统的跨境支付需要经过多个中间银行,手续繁琐,费用高昂。区块链技术可以实现点对点的跨境支付,减少了中间环节,降低了交易成本,提高了支付效率。
    • 实时清算:区块链技术可以实现实时清算和结算,缩短了交易确认时间,提高了资金的流动性和使用效率。通过智能合约自动执行清算指令,减少了人为错误和操作风险。
  • 资产管理

    • 资产证券化:区块链技术可以将实物资产(如房地产、艺术品等)数字化,生成数字资产凭证。通过智能合约实现资产的分割、转让和交易,提高了资产的流动性和透明度。
    • 供应链金融:区块链技术可以记录供应链中的每一个环节,确保交易信息的真实性和透明性。通过智能合约自动执行融资、支付和结算,降低了融资成本,提高了供应链的效率。
3. 雄安自贸区金融项目的金融产品推荐系统设计与实现

为了应对金融行业产品种类繁多、银行贷款业务流程长、审批复杂的业务痛点,本文基于雄安自贸区金融项目,设计并实现了一套金融产品推荐系统。该系统旨在为中小微企业提供金融产品推荐服务,根据客户历史交易数据构建用户画像,采用协同过滤推荐的方式产生金融产品推荐序列,帮助中小微企业在数目繁多的金融产品中准确迅速地获得自己想要的金融产品并完成信贷申请,实现了针对不同企业的“千人千面”的个性化金融产品推荐服务。

  • 用户画像构建

    • 数据收集:系统首先收集客户的交易数据、信用记录、财务报表等信息,形成原始数据集。
    • 数据清洗:对收集的数据进行清洗和预处理,去除无效和重复的数据,确保数据的质量。
    • 特征提取:通过特征提取技术,从原始数据中提取出客户的交易频率、交易金额、信用评分等关键特征,构建用户画像。
  • 协同过滤推荐

    • 相似度计算:系统通过计算用户之间的相似度,找出与目标用户兴趣相似的其他用户。常用的方法包括余弦相似度、Jaccard相似度等。
    • 推荐生成:根据相似用户的金融产品偏好,生成目标用户的推荐列表。推荐列表中的产品是相似用户曾经购买过的、且评价较高的产品。
    • 个性化调整:系统根据目标用户的特定需求和偏好,对推荐列表进行个性化调整,确保推荐结果的准确性和满意度。
  • 系统实现

    • 前端界面:系统提供友好的前端界面,用户可以通过网页或移动应用访问系统,查看推荐的金融产品。
    • 后端服务:后端服务负责处理用户请求,调用推荐算法生成推荐列表,并将结果返回给前端界面。
    • 数据存储:系统使用数据库存储用户数据、交易记录和推荐结果,确保数据的安全性和可靠性。
用户ID交易金额(万元)交易频率(次/月)信用评分推荐产品1推荐产品2推荐产品3
0015.2485企业贷款A个人贷款B信用贷款C
0023.8378企业贷款D信用贷款E投资理财F
0037.1592企业贷款G信用贷款H投资理财I
0044.5280企业贷款J个人贷款K信用贷款L
0056.3488企业贷款M信用贷款N投资理财O

% 读取用户历史交易数据
data = readtable('user_transactions.csv');

% 数据清洗
data = rmmissing(data); % 删除缺失值
data = unique(data, 'rows'); % 去除重复行

% 特征提取
user_ids = data.UserID;
transaction_amounts = data.TransactionAmount;
transaction_frequencies = data.TransactionFrequency;
credit_scores = data.CreditScore;

% 构建用户画像
user_profiles = table(user_ids, transaction_amounts, transaction_frequencies, credit_scores);

% 计算用户之间的相似度
function similarity = calculate_similarity(user1, user2)
    % 使用余弦相似度
    features1 = [user1.TransactionAmount, user1.TransactionFrequency, user1.CreditScore];
    features2 = [user2.TransactionAmount, user2.TransactionFrequency, user2.CreditScore];
    dot_product = dot(features1, features2);
    norm1 = norm(features1);
    norm2 = norm(features2);
    similarity = dot_product / (norm1 * norm2);
end

% 生成推荐列表
function recommendations = generate_recommendations(user_id, user_profiles, products)
    user_profile = user_profiles(user_profiles.UserID == user_id, :);
    similarities = zeros(height(user_profiles), 1);
    for i = 1:height(user_profiles)
        if user_profiles.UserID{i} ~= user_id
            similarities(i) = calculate_similarity(user_profile, user_profiles(i, :));
        end
    end
    [~, sorted_indices] = sort(similarities, 'descend');
    similar_users = user_profiles(sorted_indices(1:5), :); % 取前5个相似用户
    recommended_products = {};
    for i = 1:5
        user_id = similar_users.UserID{i};
        user_products = products(products.UserID == user_id, :);
        for j = 1:height(user_products)
            product = user_products.Product{j};
            if ~ismember(product, recommended_products)
                recommended_products{end+1} = product;
            end
        end
    end
    recommendations = recommended_products(1:3); % 取前3个推荐产品
end

% 示例用户ID
user_id = '001';

% 读取产品数据
products = readtable('financial_products.csv');

% 生成推荐列表
recommendations = generate_recommendations(user_id, user_profiles, products);
disp(['推荐产品: ', strjoin(recommendations, ', ')]);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值