基于大数据的企业关系网络金融风险识别研究【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1) 金融大数据平台的设计与构建

金融大数据平台的设计旨在解决区域金融数据的有效整合问题,其核心在于将来自银行业金融机构、监管部门以及政府其他机构的数据进行深度融合。首先,平台需要通过标准化接口和跨平台数据共享机制,打通各银行之间的金融数据孤岛。通过对金融、监管和政府数据的统一集成,平台不仅可以使各机构之间的数据共享变得高效透明,而且可以构建更为精确的企业风险画像。这一过程中,平台设计必须特别注重数据隐私保护和合规管理,以确保数据的合法使用和企业隐私的安全性。在数据管理层面,采用了数据仓库与数据湖相结合的技术,以便存储多样化的金融数据类型,并支持结构化与非结构化数据的并行处理。这为后续的数据分析与企业风险识别打下了坚实的基础。

平台的构建过程中,还重点关注了分布式计算和大规模数据处理能力。通过引入大数据架构中的Hadoop、Spark等分布式处理工具,系统得以支撑海量数据的实时分析。此外,通过引入机器学习算法与知识图谱技术,平台不仅仅是数据存储和计算工具,更成为数据挖掘与知识推理的智能平台。尤其是知识图谱的应用,使得不同企业之间的关系可以清晰地被描述和追踪,为后续的企业风险挖掘奠定了基础。

(2) 企业数据集市的构建与优化

在金融大数据平台的基础上,构建企业数据集市是项目的第二个关键任务。企业数据集市的构建,目的是将企业的各类信息进行汇总并呈现为易于使用的分析数据集。这种集市不仅包含企业的财务数据,还涵盖了如企业资产状况、供应链关系、股东信息、纳税记录等多方面的数据。为了更好地服务企业风险的评估和分析,集市的设计采用了基于多维数据模型的方式,使得用户可以从多角度对企业进行深入分析。

传统数据集市在处理企业复杂关系方面存在查询速度慢、建模不灵活等缺点,为了解决这一问题,本研究提出了基于知识图谱的企业关系数据集市构建模型。该模型通过数据选取、实体抽取、属性抽取以及关系抽取等步骤,将企业间的多样性关系纳入建模范畴,从而实现了企业关系的全面展示与分析。通过这种方式,数据集市不仅可以支持对企业风险的监测与预警,还可以为决策部门提供更为精确的数据支持。知识图谱的引入使得企业之间复杂的上下游关系、股权交叉关系等能够被更直观地呈现,大大提升了风险分析的深度和广度。

(3) 企业关系网络与风险识别算法的研究

企业关系网络的构建和企业风险的有效识别是本研究的核心目标之一。基于企业数据集市,本研究设计了企业关系网络构建模型,用于展示企业间复杂的担保、投资以及关联交易等关系。在该模型基础上,提出了一种新型的担保圈识别算法,即AHPL担保圈识别算法。传统的担保圈识别通常仅依赖于显性的担保数据,但由于企业之间往往存在隐性的担保关系,单一数据源的识别方法难以捕捉到这些潜在风险。本研究通过结合企业之间的非担保关系数据,如股东关联、共同投资等,增强了担保圈识别的全面性和准确性。测试结果表明,AHPL算法能够有效识别出隐性的担保网络,尤其是那些难以通过显性数据直接捕获的风险环节。

在重点企业监测方面,本研究对传统的PageRank算法进行了改进,提出了一种基于企业关系网络的改进版PageRank算法。传统的PageRank算法虽然能够评估企业的重要性,但在风险识别中的表现存在一定局限性,特别是在面对多样性企业关系时往往表现得过于单一化。通过引入企业财务状况、行业特性、关联企业风险等多个维度的加权因子,改进后的算法能够更为灵活地评估企业的综合风险水平。测试表明,改进后的PageRank算法在识别高风险企业方面表现优异,能够更好地将具备高潜在风险的企业筛选出来,从而为监管部门提供更加精准的监测目标。

本研究的整体思路是从数据平台的构建入手,逐步搭建企业数据集市,进而通过构建企业关系网络实现对企业风险的深度识别。通过整合多源异构数据、构建灵活高效的数据集市以及引入创新性的算法模型,项目在解决区域企业金融风险识别方面取得了显著成效。这不仅为区域金融稳定提供了有效的技术支撑,也为其他地区的金融监管和企业风险监测提供了可借鉴的经验和方法。

企业名称总资产(万元)年收入(万元)担保额度(万元)关联企业数量风险评分
A企业500012003000575
B企业800025004000360
C企业450018002000465
D企业1000050007000685
E企业600023003500270

% PageRank算法的改进版,用于企业风险评分

% 初始化企业关系矩阵
A = [0, 1, 1, 0, 0;
     1, 0, 1, 1, 0;
     1, 1, 0, 0, 1;
     0, 1, 0, 0, 1;
     0, 0, 1, 1, 0];

% 设置初始的PageRank值
n = size(A, 1);
PR = ones(n, 1) / n;

% 设置阻尼系数d和迭代次数
d = 0.85;
iterations = 100;

% 开始迭代计算PageRank值
for i = 1:iterations
    PR = (1 - d) / n + d * (A' * PR);
end

% 显示最终的PageRank值
disp('改进后的PageRank值:');
disp(PR);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值