📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1) 基于波动率的离散型隐马尔可夫模型(HMM)预测方法。在金融数据的分析中,股票价格的波动率是一种重要的指标,它反映了市场的不确定性和风险特征。针对股票价格预测问题,本文提出了一种基于波动率的离散型隐马尔可夫模型(HMM)预测方法。传统的HMM对观测序列的要求通常是离散的,但股票波动率数据往往是连续值,这就使得观测概率密度函数难以确定,从而影响预测的精度。为了解决这一问题,本文通过对股票波动率序列进行离散化,将连续波动率转化为若干离散的状态值,这样便于HMM进行建模和处理。
在预测阶段,本文利用HMM的状态转移矩阵和观测值概率分布矩阵,提出了一种加权方式来计算预测值的概率分布。具体来说,在预测未来状态时,不仅考虑当前状态的转移概率