📊 物联网技术与数据分析 | 物联网系统设计 | 模型构建
✨ 专业领域:
物联网系统架构设计
智能设备与传感器网络
数据采集与处理
物联网大数据分析
智能家居与工业物联网
边缘计算与云计算
物联网安全与隐私保护
💡 擅长工具:
Python/R/Matlab 数据分析与建模
物联网平台与设备编程
数据流与实时监控系统设计
机器学习与预测模型应用
物联网协议(MQTT, CoAP, HTTP)
物联网数据可视化工具
✅ 物联网专业题目与数据:物联网毕业论文【题目+数据】
https://blog.csdn.net/yuboqiuming/article/details/144252393?spm=1001.2014.3001.5502
(1) 教学楼空气质量标准的制定与需求分析 通过对国家现行多项室内空气质量标准的分析,并参考国际上的空气质量评价体系,本文提出了一种适用于教学楼场景的空气质量标准。标准覆盖了常规室内空气指标(如甲醛、二氧化碳和颗粒物)以及特定场景指标(如卫生间的氨气和硫化氢)。
教学楼内人员密度大,空气污染物的主要来源包括建筑材料、教学设备、人体代谢以及日常清洁剂等。为满足教学环境下对空气质量监测的实际需求,系统需要具备以下能力:
-
全面性:监测多种空气质量指标,确保涵盖主要污染物。
-
实时性:及时获取并上传空气质量数据,支持即时报警功能。
-
易用性:用户界面友好,适用于学校管理人员和普通用户。
-
稳定性与可扩展性:系统架构必须稳定,能够支持未来传感器种类和数量的扩展。
针对以上需求,本文提出了基于物联网技术的教学楼空气质量监测系统设计方案。
(2) 空气质量监测节点设计与实现
根据教学楼室内空气污染的特点,设计了两类空气质量监测节点:
-
常规室内空气质量监测节点:主要监测甲醛、二氧化碳和颗粒物浓度。
-
卫生间空气质量监测节点:主要监测氨气和硫化硫浓度。
硬件设计方面,选用高灵敏度传感器模块,结合微控制器完成数据采集和处理。具体包括:
-
甲醛传感器:用于检测低浓度甲醛,满足教学环境的精度要求。
-
二氧化碳传感器:支持高精度测量,适应教室内人员密集场景。
-
颗粒物传感器:支持PM2.5和PM10颗粒物监测。
-
氨气与硫化氢传感器:用于卫生间特定气体监测。
嵌入式软件基于LoRa技术和LoRaWAN协议,完成数据的无线传输和节点组网功能。节点硬件设计过程包括:
-
PCB绘制与仿真:采用多层板布局优化信号完整性和抗干扰能力。
-
电路调试:通过模拟测试环境,优化传感器信号采集的稳定性。
软件部分设计了传感器驱动、数据处理、通信协议封装模块,确保数据上传的准确性和时效性。
(3) 系统集成与功能实现
结合LoRa网关与服务器,构建了完整的空气质量监测系统。系统架构包括数据采集端、数据传输网络和数据管理与展示端。
-
网关设计:LoRa网关作为节点与服务器的桥梁,完成数据的接收与转发。
-
数据存储:采用PostgreSQL数据库,支持海量数据存储与查询优化。
-
用户界面设计:开发了网页端和手机APP,提供数据实时展示、历史数据查询、异常报警等功能。
系统功能包括:
-
实时监测与报警:当空气质量参数超过标准值时,系统自动触发报警功能,通过APP和网页界面推送通知。
-
数据分析与可视化:支持空气质量参数的趋势分析,生成多维度数据报告。
-
用户管理与权限分配:支持不同用户角色的权限管理,确保系统数据安全。
系统在测试过程中进行了全面功能验证,包括节点测量精度测试、数据上传延时测试以及整体运行稳定性测试。最终,系统部署于华中师范大学9号教学楼2楼,实际运行情况良好。
import time
import Adafruit_DHT
import serial
from flask import Flask, jsonify, request
from sqlalchemy import create_engine
# 初始化硬件传感器
DHT_SENSOR = Adafruit_DHT.DHT22
DHT_PIN = 4
# 初始化LoRa模块
SERIAL_PORT = '/dev/ttyS0'
BAUD_RATE = 9600
lora_serial = serial.Serial(SERIAL_PORT, BAUD_RATE)
# 初始化数据库连接
DB_URI = 'postgresql://user:password@localhost:5432/air_quality'
engine = create_engine(DB_URI)
# Flask服务器初始化
app = Flask(__name__)
@app.route('/api/data', methods=['POST'])
def upload_data():
data = request.json
try:
with engine.connect() as conn:
query = """INSERT INTO air_quality_data (timestamp, sensor_id, co2, formaldehyde, pm2_5, ammonia, h2s)
VALUES (NOW(), :sensor_id, :co2, :formaldehyde, :pm2_5, :ammonia, :h2s)"""
conn.execute(query, **data)
return jsonify({"status": "success"}), 200
except Exception as e:
return jsonify({"status": "error", "message": str(e)}), 500
@app.route('/api/data', methods=['GET'])
def get_data():