此为应用数学第5次课。
常微分方程数值方法
差分法、有限元法、谱方法等。这里只介绍显式欧拉法。
欧拉法及其变种
问题描述:在 x ∈ [ a , b ] x \in [a,b] x∈[a,b]求解 y y y,满足
y ′ = f ( x , y ) , y ( x 0 ) = y 0 y'= f(x,y), y(x_0)=y_0 y′=f(x,y),y(x0)=y0
将 [ a , b ] [a,b] [a,b]等分成 N N N份,每份长度为 h h h, x 0 = a , x i = a + i h x_0=a, x_i=a+ih x0=a,xi=a+ih。令 y ( x i ) y(x_i) y(xi)为 x i x_i xi处的真实值, y i y_i yi为拟合值。
前向欧拉法
由泰勒展开,有
y ′ ( x i ) = y ( x i + Δ x ) − y ( x i ) Δ x + o ( Δ x ) y'(x_i) = \frac{y( x_i+\Delta x ) - y(x_i)}{\Delta x} + o(\Delta x) y′(xi)=Δxy(xi+Δx)−y(xi)+o(Δx)
近似得到,
y ′ ( x i ) ≈ y ( x i + h ) − y ( x i ) h y'(x_i) \approx \frac{y(x_i+h)-y(x_i)}{h} y′(xi)≈hy(xi+h)−y(xi)
因为 y ′ ( x i ) = f ( x i , y ( x i ) ) y'(x_i) = f(x_i, y(x_i)) y′(xi)=f(xi,y(xi)),所以有
y ( x i + 1 ) − y ( x i ) ≈ h f ( x i , y ( x i ) ) y(x_{i+1}) - y(x_i) \approx h f(x_i, y(x_i)) y(xi+1)−y(xi)≈hf(xi,y(xi))
从而得到前向欧拉法,
y i + 1 = y i + h f ( x i , y i ) y_{i+1} = y_i + h f(x_i, y_i) yi+1=yi+hf(xi,yi)
后向欧拉法
类似的,有
y ′ ( x i + 1 ) ≈ y ( x i + 1 ) − y ( x i ) h y'(x_{i+1}) \approx \frac{y(x_{i+1})-y(x_i)}{h} y′(xi+1)≈hy(xi+1)−y(xi)
由于 y ′ ( x i + 1 ) = f ( x i + 1 , y i + 1 ) y'(x_{i+1}) = f(x_{i+1}, y_{i+1}) y′(xi+1)=f(xi+1,yi+1),得到
y i + 1 = y i + h f ( x i + 1 , y i + 1 ) y_{i+1} = y_i + h f(x_{i+1}, y_{i+1}) yi+1=yi+hf(xi+1,yi+1)
但由于 y i + 1 y_{i+1} yi+1不预先知道,所以需要方程解出 y i + 1 y_{i+1} yi+1,为隐式欧拉法了。可以使用预估校正法来利用后向欧拉的思想。
预估校正法
先用前向欧拉法得到对 y i + 1 y_{i+1} yi+1的估计 y ˉ i + 1 \bar{y}_{i+1} yˉi+1,即
y ˉ i + 1 = y i + h f ( x i , y i ) \bar{y}_{i+1} = y_i + h f(x_i, y_i) yˉi+1=yi+hf(xi,yi)
再用后向欧拉法进行校正
y i + 1 = y i + h f ( x i + 1 , y ˉ i + 1 ) y_{i+1} = y_i + h f(x_{i+1}, \bar{y}_{i+1}) yi+1=yi+hf(xi+1,yˉi+1)
梯形法
综合一下前向欧拉和后向欧拉,可以得到一个平均主义的变种:
y i + 1 = y i + h 2 [ f ( x i , y i ) + f ( x i + 1 , y i + 1 ) ] y_{i+1} = y_i + \frac{h}{2} [ f(x_i, y_i) + f(x_{i+1}, y_{i+1}) ] yi+1=yi+2h[f(xi,yi)+f(xi+1,yi+1)]
当然这仍然是一种隐式欧拉法。
在预估校正法中也可以采用类似的思想,有
y i + 1 = y i + h 2 [ f ( x i , y i ) + f ( x i + 1 , y ˉ i + 1 ) ] y_{i+1} = y_i + \frac{h}{2} [ f(x_i, y_i) + f(x_{i+1}, \bar{y}_{i+1}) ] yi+1=yi+2h[f(xi,yi)+f(xi+1,yˉi+1)]
2阶龙格库塔
2阶龙格库塔如下:
y i + 1 = y i + h [ 1 2 k 1 + 1 2 k 2 ] k 1 = f ( x i , y i ) k 2 = f ( x i , y i + h k 1 ) \begin{aligned} y_{i+1} &= y_i + h[\frac{1}{2} k_1 + \frac{1}{2} k_2] \\ k_1 &= f(x_i, y_i) \\ k_2 &= f(x_i, y_i + h k_1) \end{aligned} yi+1k1k2=yi+h[21k1+21k2]=f(x