十二、Blending集成学习算法
来源
Datewhle24期__集成学习(下) :
https://github.com/datawhalechina/team-learning-data-mining/tree/master/EnsembleLearning
作者:李祖贤、薛传雨、赵可、杨毅远、陈琰钰
论坛地址:
http://datawhale.club/t/topic/1574
12.1 Blending集成原理及思路
-
看了很多的blending资料说的都不太一样, 此处引用datewhale原有的将训练集拆分出验证集的方法.
-
Blending实际上可以看做是简化版的Stacking, Blending直接用不相交的数据集用于不同层的训练。
-
以两层的Blending为例,训练集划分为两部分(d1,d2),测试集为test。
- 第一层:用d1训练多个模型,将其对d2和test的预测结果作为第二层的New Features。
- 第二层:用d2的New Features和标签训练新的分类器,然后把test的New Features输入作为最终的测试集,对test预测出的结果就是最终的模型融合的值。
-
Blending 流程
- 将数据划分为训练集和测试集(test_set),其中训练集需要再次划分为训练集(train_set)和验证集(val_set);
- 创建第一层的多个模型,这些模型可以使同质的也可以是异质的;
- 使用train_set训练步骤2中的多个模型,然后用训练好的模型预测val_set和test_set得到val_predict, test_predict1;
- 创建第二层的模型,使用val_predict作为训练集训练第二层的模型;
- 使用第二层训练好的模型对第二层测试集test_predict1进行预测,该结果为整个测试集的结果
在(1)步中,总的数据集被分成训练集和测试集,如80%训练集和20%测试集,然后在这80%的训练集中再拆分训练集70%和验证集30%,因此拆分后的数据集由三部分组成:训练集80% 70% 、测试集20%、验证集80% 30% 。训练集是为了训练模型,测试集是为了调整模型(调参),测试集则是为了检验模型的优度。
在(2)-(3)步中,我们使用训练集创建了K个模型,如SVM、random forests、XGBoost等,这个是第一层的模型。 训练好模型后将验证集输入模型进行预测,得到K组不同的输出,我们记作 A 1 , . . . , A K A_1,...,A_K A1,...,AK,然后将测试集输入K个模型也得到K组输出,我们记作 B 1 , . . . , B K B_1,...,B_K B1,...,BK,其中 A i A_i Ai的样本数与验证集一致, B i B_i Bi的样本数与测试集一致。如果总的样本数有10000个样本,那么使用5600个样本训练了K个模型,输入验证集2400个样本得到K组2400个样本的结果 A 1 , . . . , A K A_1,...,A_K A1,...,AK,输入测试集2000个得到K组2000个样本的结果 B 1 , . . . , B K B_1,...,B_K B1,...,BK 。
在(4)步中,我们使用K组2400个样本的验证集结果 A 1 , . . . , A K A_1,...,A_K A1,...,AK作为第二层分类器的特征,验证集的2400个标签为因变量,训练第二层分类器,得到2400个样本的输出。
在(5)步中,将输入测试集2000个得到K组2000个样本的结果 B 1 , . . . , B K B_1,...,B_K B1,...,BK放入第二层分类器,得到2000个测试集的预测结果。
Blending的优点在于:
1.比stacking简单(因为不用进行k次的交叉验证来获得stacker feature)
2.避开了一个信息泄露问题:generlizers和stacker使用了不一样的数据集
3.在团队建模过程中,不需要给队友分享自己的随机种子
而缺点在于:
1.使用了很少的数据(是划分hold-out作为测试集,并非cv)
2.blender可能会过拟合(其实大概率是第一点导致的)
3.stacking使用多次的CV会比较稳健
12.2 Blending代码
# 加载相关工具包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.style.use("ggplot")
%matplotlib inline
import seaborn as sns
# 创建数据
from sklearn import datasets
from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_split
data, target = make_blobs(n_samples=10000, centers=2, random_state=1, cluster_std=1.0 )
## 创建训练集和测试集
X_train1,X_test,y_train1,y_test = train_test_split(data, target, test_size=0.2, random_state=1)
## 创建训练集和验证集
X_train,X_val,y_train,y_val = train_test_split(X_train1, y_train1, test_size=0.3, random_state=1)
print("The shape of training X:",X_train.shape)
print("The shape of training y:",y_train.shape)
print("The shape of test X:",X_test.shape)
print("The shape of test y:",y_test.shape)
print("The shape of validation X:",X_val.shape)
print("The shape of validation y:",y_val.shape)
# 设置第一层分类器
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
clfs = [SVC(probability = True),RandomForestClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),KNeighborsClassifier()]
# 设置第二层分类器
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
# 输出第一层的验证集结果与测试集结果
val_features = np.zeros((X_val.shape[0],len(clfs))) # 初始化验证集结果
test_features = np.zeros((X_test.shape[0],len(clfs))) # 初始化测试集结果
for i,clf in enumerate(clfs):
clf.fit(X_train,y_train)
val_feature = clf.predict_proba(X_val)[:, 1]
test_feature = clf.predict_proba(X_test)[:,1]
val_features[:,i] = val_feature
test_features[:,i] = test_feature
# 将第一层的验证集的结果输入第二层训练第二层分类器
lr.fit(val_features,y_val)
# 输出预测的结果
from sklearn.model_selection import cross_val_score
cross_val_score(lr,test_features,y_test,cv=5)
参考资料
- https://zhuanlan.zhihu.com/p/64676444从零实现机器学习算法(七)Blending
- https://blog.csdn.net/sinat_35821976/article/details/83622594 图解Blengding
- https://mlwave.com/kaggle-ensembling-guide/Kaggle Ensembling Guide
- https://zhuanlan.zhihu.com/p/42229791模型融合之stacking&blending