条件期望的测度论解释

条件期望

引入1

在概率空间上 ( Ω , F , P ) (\Omega, \mathcal{F},P) (Ω,F,P)上,给定事件 B B B,那么 P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P(A|B)=\frac{P(A\cap B)}{P(B)} P(AB)=P(B)P(AB)称为条件概率,令 P B = { P ( A ∣ B ) : A ∈ F } P_B=\{P(A|B):A\in \mathcal{F} \} PB={P(AB):AF} ( Ω , F , P B ) (\Omega, \mathcal{F},P_B) (Ω,F,PB)也构成概率空间,在这个概率空间中随机变量 X X X求期望就是:
E ( X ∣ B ) = ∫ Ω X d P B = 1 P ( B ) ∫ B X d P . E(X|B)=\int_\Omega X dP_B=\frac{1}{P(B)}\int_B X dP. E(XB)=ΩXdPB=P(B)1BXdP.

引入2

如果条件 G \mathcal{G} G具有可列个可测分割,原子记为 { B 1 , B 2 , … , B n , …   } \{B_1, B_2,\dots, B_n, \dots\} {B1,B2,,Bn,},那么条件期望 E ( X ∣ G ) ( ω ) E(X|\mathcal{G})(\omega) E(XG)(ω)是一个随机变量。当 ω ∈ B 1 \omega\in B_1 ωB1时, E ( X ∣ G ) ( ω ) = E ( X ∣ B 1 ) E(X|\mathcal{G})(\omega)=E(X|B_1) E(XG)(ω)=E(XB1),同理,因此可以写成
E ( X ∣ G ) ( ω ) = ∑ i = 1 ∞ E ( X ∣ B i ) 1 B i . E(X|\mathcal{G})(\omega)=\sum_{i=1}^{\infty}E(X|B_i)1_{B_i}. E(XG)(ω)=i=1E(XBi)1Bi.

这里需要说明,如果 ω 1 , ω 2 ∈ B i \omega_1, \omega_2 \in B_i ω1,ω2Bi,那么 E ( X ∣ B i ) ( ω 1 ) = E ( X ∣ B i ) ( ω 2 ) E(X|B_i)(\omega_1)=E(X|B_i)(\omega_2) E(XBi)(ω1)=E(XBi)(ω2),这是因为如果 E ( X ∣ B i ) ( ω 1 ) ≠ E ( X ∣ B i ) ( ω 2 ) E(X|B_i)(\omega_1)\ne E(X|B_i)(\omega_2) E(XBi)(ω1)=E(XBi)(ω2),设这两个值为 c 1 , c 2 c_1, c_2 c1,c2,那么 B i ∩ { ω : E ( X ∣ B i ) = c 1 } B_i\cap \{\omega:E(X|B_i)=c_1\} Bi{ω:E(XBi)=c1} B i ∩ { ω : E ( X ∣ B i ) = c 2 } B_i\cap \{\omega:E(X|B_i)=c_2\} Bi{ω:E(XBi)=c2}都是非空子集,和 B i B_i Bi是原子矛盾。

对于 B = ∑ B i B=\sum B_i B=Bi,可以通过 E ( X ∣ G ) ( ω ) E(X|\mathcal{G})(\omega) E(XG)(ω)求出来,具体的,
P ( B ) E ( X ∣ B ) = ∫ B X d P = ∑ ∫ B i X d P = ∑ E ( X ∣ B i ) P ( B i ) = ∑ i = 1 ∞ E ( X ∣ B i ) 1 B i 1 B P ( B i ) = ∫ B E ( X ∣ G ) d P . P(B)E(X|B)=\int_BXdP=\sum\int_{B_i}XdP=\sum E(X|B_i)P(B_i)\\ =\sum_{i=1}^{\infty}E(X|B_i)1_{B_i}1_{B}P(B_i)=\int_BE(X|\mathcal{G})dP. P(B)E(XB)=BXdP=BiXdP=E(XBi)P(Bi)=i=1E(XBi)1Bi1BP(Bi)=BE(XG)dP.
第一、三个等号是条件期望的定义。
我们得到一个关系是对 ∀ B ∈ G , \forall B \in \mathcal{G}, BG,
∫ B X d P = ∫ B E ( X ∣ G ) d P . \int_BXdP=\int_BE(X|\mathcal{G})dP. BXdP=BE(XG)dP.
这便引出了描述性定义,和上面的定义是等价的。
Z ( ω ) Z(\omega) Z(ω) G \mathcal{G} G上可测,且满足上面的式子,那么就是条件期望。

一般情形

在一般情形下不能像上面那样找到一列原子分割,但是描述性定义仍然成立。条件期望作为随机变量,不在 P P P的零测集上定义。

条件期望的性质

1、 E [ E [ X ∣ G ] ] = E X E[E[X|\mathcal{G}]]=EX E[E[XG]]=EX
∫ Ω E [ X ∣ G ] d P = ∫ Ω X d P = E X \int_\Omega E[X|\mathcal{G}]dP=\int_\Omega XdP=EX ΩE[XG]dP=ΩXdP=EX
2、若 X ∈ G X\in \mathcal{G} XG,则 E [ X Y ∣ G ] = X E [ Y ∣ G ] a . s . E[XY|\mathcal{G}]=XE[Y|\mathcal{G}] a.s. E[XYG]=XE[YG]a.s.
只考虑 X = 1 B 1 , B 1 ∈ G X=1_{B_1},B_1\in \mathcal{G} X=1B1,B1G的情形,
∫ B E [ X Y ∣ G ] d P = ∫ B ∩ B 1 Y d P = ∫ B E [ Y ∣ G ] d P = ∫ B ∩ B 1 1 B 1 E [ Y ∣ G ] d P \int_BE[XY|\mathcal{G}]dP=\int_{B\cap {B_1}}YdP=\int_{B}E[Y|\mathcal{G}]dP=\int_{B\cap {B_1}}1_{B_1}E[Y|\mathcal{G}]dP BE[XYG]dP=BB1YdP=BE[YG]dP=BB11B1E[YG]dP
由条件期望在 a . s . a.s. a.s.下的唯一性得到:
1 B 1 E [ Y ∣ G ] = E [ 1 B 1 Y ∣ G ]   a . s . 1_{B_1}E[Y|\mathcal{G}]=E[1_{B_1}Y|\mathcal{G}]\ a.s. 1B1E[YG]=E[1B1YG] a.s.
3、若 H ⊂ G \mathcal{H}\subset\mathcal{G} HG,则 E [ X ∣ H ] = E [ E ( X ∣ G ) ∣ H ] = E [ E ( X ∣ H ) ∣ G ] E[X|\mathcal{H}]=E[E(X|\mathcal{G})|\mathcal{H}]=E[E(X|\mathcal{H})|\mathcal{G}] E[XH]=E[E(XG)H]=E[E(XH)G]
对于 ∀ A ∈ H \forall A \in \mathcal{H} AH
∫ A E [ E ( X ∣ G ) ∣ H ] d P = ∫ A E ( X ∣ G ) d P = ∫ A X d P = ∫ A E [ X ∣ H ] d P \int_AE[E(X|\mathcal{G})|\mathcal{H}]dP=\int_AE(X|\mathcal{G})dP=\int_AXdP=\int_AE[X|\mathcal{H}]dP AE[E(XG)H]dP=AE(XG)dP=AXdP=AE[XH]dP
对于第二个等号, E ( X ∣ H ) ∈ G E(X|\mathcal{H})\in \mathcal{G} E(XH)G,因此直接脱出。

Bogachev 测度论电子版是一本重要的数学书籍,由俄罗斯数学家Vladimir I. Bogachev所著。该书主要讲述测度论及其在概率论和数学分析的应用。 测度论是数学研究集合的度量方法的分支。测度是一种给集合分配“大小”的数学概念。Bogachev测度论电子版系统地介绍了测度论的基本概念和性质,包括测度的可数可加性、有限可加性、连续性等。 该书重点讨论了测度论概率论的应用。在概率论,我们常常需要对事件的概率进行度量。Bogachev测度论电子版详细解释了如何使用测度论的工具和理论来描述概率空间以及事件的概率分布。对于任何一个概率空间,测度论为我们提供了一种通用的框架,使我们能够研究概率、期望、条件概率以及随机变量等等。 此外,Bogachev测度论电子版还讨论了测度论在数学分析的应用。测度论为我们提供了一种有力的工具来研究函数的性质性质的度量。通过引入测度等概念,我们可以精确地描述函数的连续性、可积性以及其他重要的性质。这种工具在分析领域具有广泛的应用,为解决许多复杂的数学问题提供了新的思路和方法。 总之,Bogachev测度论电子版是一本介绍测度论及其在概率论和数学分析应用的重要书籍。该书详细而系统地阐述了测度论的基本概念、性质以及其在概率论和数学分析的重要应用,对于从事相关研究和应用的数学学者和研究者具有重要的参考价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值