Ubuntu18.04 opencv3.4.4 基于C/C++的高级辅助驾驶交通标志识别(未完结)V1.0.0

  在开发项目过程中有许多已解决或者待解决的问题,以此记录。若有志同道合友,可互相交流。
识别红色交通标志:







识别黄色交通标志

在这里插入图片描述






识别蓝色交通标志




在这里插入图片描述
以上所有图片来源均为百度图片,如有侵权立即删除。


  在识别交通标志的过程中,没有涉及到卷积神经网络,没有对内容进行识别,只是对单一颜色的图片进行识别,没有涉及到将所有颜色图片混合进行识别。并且蓝色的交通标志识别率非常地低,如过有大佬有解决办法,希望不吝赐教!/抱拳

2019.7 重点难点:待解决

1.卷积神经网络使用方法及作用。
2.图像预处理各种方法的不同组合。
3.如何将红、黄、蓝三种不同颜色的标志区分。
4.将图片划分尺寸,提取该尺寸的图片。
5.使用GPU模块加速。
6.实拍中存在很多噪声点,对交通标志识别影响大。
7.一些交通标志离的比较近容易产生粘连无法识别。
8.蓝色交通标志很容易与蓝色的天空融合,很不易识别。

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
告知:需要学习YOLOv4进行TT100K数据集上中国交通标志识别的学员请前往(1) Ubuntu系统《YOLOv4目标检测实战:中国交通标志识别》课程链接:https://edu.csdn.net/course/detail/29362(2)《Windows版YOLOv4目标检测实战:中国交通标志识别》课程链接:https://edu.csdn.net/course/detail/29363在无人驾驶中,交通标志识别是一项重要的任务。本课程中的项目以美国交通标志数据集LISA为训练对象,采用YOLOv3目标检测方法实现实时交通标志识别。具体项目过程包括包括:安装Darknet、下载LISA交通标志数据集、数据集格式转换、修改配置文件、训练LISA数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。YOLOv3基于深度学习,可以实时地进行端到端的目标检测,以速度快见长。本课程将手把手地教大家使用YOLOv3实现交通标志的多目标检测。本课程的YOLOv3使用Darknet,在Ubuntu系统上做项目演示。 Darknet是使用C语言实现的轻型开源深度学习框架,依赖少,可移植性好,值得深入学习和探究。除本课程《YOLOv3目标检测实战:交通标志识别》外,本人推出了有关YOLOv3目标检测的系列课程,请持续关注该系列的其它课程视频,包括:《YOLOv3目标检测实战:训练自己的数据集》《YOLOv3目标检测:原理与源码解析》《YOLOv3目标检测:网络模型改进方法》另一门课程《YOLOv3目标检测实战:训练自己的数据集》主要是介绍如何训练自己标注的数据集。而本课程的区别主要在于学习对已标注数据集的格式转换,即把LISA数据集从csv格式转换成YOLOv3所需要的PASCAL VOC格式和YOLO格式。本课程提供数据集格式转换的Python代码。请大家关注以上课程,并选择学习。下图是使用YOLOv3进行交通标志识别的测试结果

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值