1. Training procedure refinements:
1. data augmentations
2. optimization methods.
3. loss functions
2. Baseline Training Procedure:
-
Randomly sample an image and decode it into 32-bit floating point raw pixel values in [0, 255].
-
Randomlycroparectangularregionwhoseaspectratio is randomly sampled in [3/4, 4/3] and area randomly sampled in [8%, 100%], then resize the cropped region into a 224-by-224 square image.
-
Flip horizontally with 0.5 probability.
-
Scale hue, saturation, and brightness with coefficients uniformly drawn from [0.6, 1.4].
-
Add PCA noise with a coefficient sampled from a nor-mal distribution N (0, 0.1).
-
Normalize RGB channels by subtracting 123.68, 116.779, 103.939 and dividing by 58.393, 57.12, 57.375, respectively.
3. Efficient Training