单变量微积分重点(2)

泰勒公式

 用柯西定理证明

拉格朗日余项

麦克劳林展开式:

 

皮亚诺余项的泰勒公式:

 

弧长的微分

 

 

注意s'(t)需要在后面证明(定积分的知识)

不定积分:

注意,不同的积分方法经常会得到不同的结果,但它们一定只相差一个常数

定积分:

 

 

 

 可积分的充分条件:

 积分中值定理:

 微积分基本定理:

 

 注意积分变量和上限变量是不一样的,但都写成x方便。

积分变量可以随便换。

牛顿-莱布尼兹公式

一般变限积分求导

 

曲线弧长:

 在此证明

 

圆的周长公式:

 弧长微分公式:

 

圆台侧面积问题:

 

注意,在做近似的时候,需要保证误差必须是变量的高阶无穷小

也就是\Deltay = f'(x)dx + o(\Deltax) 

直观的理解是,考虑一个球的体积,相对于体积而言,圆台和圆柱的差距很小,

所以微元法看成梯形还是矩形并不影响大局。当然端点例外,但因为只有那一个点有这个问题。

但是如果是表面积,圆台和圆柱的差距就不可忽略了。

第一类广义积分:

 

第二类广义积分:

收敛级数的性质:

 

 

柯西-阿玛达公式:

收敛区间的收敛幂级数逐项可导,逐项可积,而且收敛区间不变

 

 

求幂级数的方法:

函数展开成幂级数:

 

 

 

 

 

 

求积分的新方法:

 

 唯一性定理:

看一个例子:

 

 能展开幂级数之后,求导和积分都好做。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yxriyin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值