1.Lei H , Yang Y . CDAE: A Cascade of Denoising Autoencoders for Noise Reduction in the Clustering of Single-Particle Cryo-EM Images[J]. Frontiers in Genetics, 2021
本文设计了一个级联型降噪自编码器(CDAE),三个模块级联,每个模块包含一个卷积自编码器,由不同SNR的模拟数据进行预训练,并由目标数据集进行微调。
使用了PSNR(peak signal-to-noise ratio)来评价降噪效果,计算公式如下:

其中𝑀𝐴𝑋𝐼2其中为图片可能的最大像素值,例如255(8bit)。
数据集(PDB IDs):5wth, 5k0y, 5flc, and 5gjq;
4个结构,每个结构4种角度,每个角度1000张图像。
2.
深度学习在电镜图像聚类中的应用与评价

本文综述了几篇关于使用深度学习方法,如自编码器和变分自编码器,进行单粒子cryo-EM图像聚类的研究。这些方法通过降噪、聚类和结构重建提高图像分析的准确性。评价标准包括PSNR、FMI和角度差异。研究展示了在不同数据集上,如5wth、5k0y、5flc和5gjq,这些算法如何改进聚类效果并影响重构的三维结构。
最低0.47元/天 解锁文章
150

被折叠的 条评论
为什么被折叠?



