冷冻电镜单颗粒图像聚类/降噪评价标准

深度学习在电镜图像聚类中的应用与评价
本文综述了几篇关于使用深度学习方法,如自编码器和变分自编码器,进行单粒子cryo-EM图像聚类的研究。这些方法通过降噪、聚类和结构重建提高图像分析的准确性。评价标准包括PSNR、FMI和角度差异。研究展示了在不同数据集上,如5wth、5k0y、5flc和5gjq,这些算法如何改进聚类效果并影响重构的三维结构。

1.Lei H , Yang Y . CDAE: A Cascade of Denoising Autoencoders for Noise Reduction in the Clustering of Single-Particle Cryo-EM Images[J]. Frontiers in Genetics, 2021

本文设计了一个级联型降噪自编码器(CDAE),三个模块级联,每个模块包含一个卷积自编码器,由不同SNR的模拟数据进行预训练,并由目标数据集进行微调。

使用了PSNR(peak signal-to-noise ratio)来评价降噪效果,计算公式如下:

其中𝑀𝐴𝑋𝐼2其中为图片可能的最大像素值,例如255(8bit)。

数据集(PDB IDs):5wth, 5k0y, 5flc, and 5gjq;

4个结构,每个结构4种角度,每个角度1000张图像。

2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值