股票市场作为经济体系的重要组成部分,其价格波动对投资者、企业和整个经济环境都有着深远的影响。准确预测股票价格一直是投资者、金融机构和政策制定者关注的重点。近年来,随着金融市场复杂性的增加,股票价格的预测难度也不断提高。传统的统计模型如ARIMA(自回归积分滑动平均模型)在处理线性时间序列数据方面表现出色,但在面对非线性和复杂的市场行为时,其预测能力可能会受到限制。然而,ARIMA模型仍然是时间序列分析中不可或缺的工具,尤其是在短期预测方面。万代影业作为一家在影视行业具有重要影响力的公司,其股票价格不仅受到公司自身业绩的影响,还受到市场情绪、宏观经济环境以及行业竞争等多种因素的综合影响。通过建立ARIMA模型对万代影业的股票价格进行预测分析,不仅可以帮助投资者更好地理解股票价格的波动规律,还可以为投资决策提供科学依据。。
它能够为投资者提供科学依据,帮助其制定合理的投资策略,优化投资组合,降低投资风险,从而实现收益最大化。该研究有助于验证时间序列模型在复杂金融市场中的有效性,深化对股票市场运行规律的理解,为金融市场理论的发展提供实证支持。此外,通过对股票价格波动的预测,可以为万代影业自身以及金融机构提供风险预警与控制的工具,助力企业调整经营策略和资本运作计划,维护市场稳定。最后,该研究也为学术领域提供了宝贵的经验,推动ARIMA模型的改进与创新,为金融学、统计学和机器学习等多学科的交叉研究奠定基础。。
LegeseFeyisaHabtamu等[1](2022)通过研究证明,利用ARIMA模型可以对股票价格进行时间序列分析预测,为投资者在股市中获取收益提供一定的参考意义。DindaPratiwi等[2](2021)利用牛市数据通过分析最终的出结果表明实体经济活动和股票市场之间不存在明显的相互关系,可能是因为数据存在泡沫。DiancoRF等[3](2021)在研究中指出,ARIMA模型主要运用在时间序列变量的短期预测中,因为单个时间序列不能呈现出规律据有不可测性,但整体的时间序列会呈现一定规律,以数学形式表示ARIMA模型的这种规律进行短期预测。ShakirKhan等[4](2020)在文章中通过比较计算MAPE和持仓检验方面的结果得出利用ARIMA模型对股票价格进行预测与有很大的发展空间。H.S.Umar等[5](2019)利用ARIMA模型对国家大米产量进行时间序列分析得出2025年尼日利亚将实现大米的自给自足,对国家稻米进口提出建议来消除市场上稻米商品供求不平衡和有关商品价格上涨问题。A.U.Noman等[6](2020)通过拟合ARIMA模型对孟加拉国茶叶出口进行有效的预测,对政策制定者制订该国出口发展计划提供一定的参考意义。
黄诗敏[7](2022)研究表明,时间序列平稳性检验主要采用图形分析法,假设检验法2种。其中图形分析法可由时序图和自相关图的图形特征来评判,简便易行且适用范围广;但是也有主观性强,造成资料不够精确的不足。并且假设检验法能够通过构建检验统计量来做出精确判断,当前普遍采用的方法为单位根检验,比图形分析法更具有科学性和准确性。苗蕻森[8](2022)利用ARIMA模型对时间序列线性部分进行拟合,然后借助LSTM和TCN模型分别对时间序列的残差部分拟合,通过比较RMSE和准确率、精确度、召回率、F1Score等指标分析各自在股票价格预测中的应用效果,发现组合模型相对于单模型更好、TCN相对于LSTM更好。梁影[9](2022)采用函数型主成分分析预测法,函数型加权主成分预测法,函数型动态主成分分析与因子分析相结合的二次降维预测法一步预测股票价格,并将函数型数据分析方法运用到多支高频股价数据中。叶坤霖[10](2020)通过选取五个宏观经济变量建立VAR向量自回归模型,通过利用脉冲响应函数对结果进行分析,发现沪深300指数和五个宏观经济变量间存在着长期均衡关系,我国股票市场和实体经济存在着一定程度脱节。朱家明[11](2020)对外汇储备数据进行平稳性和白噪声检验,利用二阶差分的方法消除长期趋势的影响,根据ACF图和相关系数对AR(2)模型进行拟合,最终进行显著性检验利用AR(2)模型预测我国外汇储备规模得出我国外汇储备的趋势,对我国未来外汇储备提供一定的参考意义。刘心阳[12](2022)利用时间序列分析方法并运用python,Eviews等软件,拟合出ARIMA模型分析并检验湖北省粮食产量优化预测情况,结果表明,ARIMA模型在短期内能够很好地预测数据。李玥[13](2020)基于BP神经网络和ARIMA模型分别建立不同的预测模型,对旅游人数进行预测。同时,采用插值和差分方法处理因年份数据异常而导致的数据缺失。最终,通过分析模型预测结果和实际数据,得出京沪深旅游发展规律。刘松[14](2021)通过python建立时间序列模型对股票价格进行检验并预测,得出预测值和真实值的误差不超过0.04,表明以ARIMA模型对股价短期预测效果良好,可以为投资者提供一定的投资方向。高雅婷[15](2022)提出了一种新的股票价格曲线相似度度量方法。首先对股票时间序列进行了分割和加权。然后将兰氏距离嵌入到动态时间弯曲距离中,最后结合自回归和神经网络预测方法对股票价格进行预测。并通过对试验结果和算法的分析,表明该方法在时间序列预测中具有一定的应用前景。李浩铭[16](2022)通过ARIMA模型BP神经网络和LSTM模型对上证50指数涨跌进行了分析,发现三种模型拟合度都较好,在价格起伏较大的情况下选择ARIMA模型较优。阳红燕[17](2022)利用R语言软件对1978年-2020年茶叶产量数据建立ARIMA模型反映茶叶产量趋势,对贵州省茶叶种植提出良好的建议。张兴旺[18](2022)通过EVA估值法选取14个指标分析中国影视企业财务状况以此来对中国影视企业投资价值进行分析,结合市盈率对中国影视企业投资价值做出准确判断。李笑甜[19](2022)选取各项指标较优异的宁波影视企业进行分析,利用绝对估值和相对估值法进行计算发现绝对估值法较为可靠,但两种都存在主观因素容易出现偏差。肖琳[20](2022)利用ARIMA-BP-PCA-GRNN模型进行组合对股票价格进行研究对比发现PCA-GRNN-ARIMA模型预测精度较高较为准确。
综上所述,市场导向在证券市场中发挥着重要的作用。证券价格的变化与市场规律存在因果关系,这种关系的表现日益明显,为制度和市场方面的证券分析提供良好的前提条件。国外股票投资方法持续发展创新,从传统技术分析和基本面分析到现代的经济计量分析、实证研究及投资组合构造,国内学者也在跟随时代发展进步,并且取得了显著成就,特别是在投资价值研究方面。国内学者逐渐从传统的股票投资价值估计方法转向计量模型定价。这些计量模型包括因子分析和主成分分析等多元统计分析方法。近年来,国内学者还对新型ARIMA模型进行了广泛的研究和实证检验。
首先,通过背景、意义和研究状况对选题进行分析和文献进行归纳总结。其次,为ARMA和ARIMA模型理论和建立过程介绍。然后,从万达影业企业股票发展现状、内外部影响因素。对万达影业企业股票价格影响因素进行分析。随后,通过东方财富网对万达影业企业2022年7月1日—2022年12月31日股票价格进行搜集做为样本数据,对所选取的81个样本数据进行平稳化处理使数列变得平稳,随后利用单位根检验序列平稳性,利用自相关和偏自相关图进行识别和定阶,确立初步预测模型后进行可逆根和白噪声检验保证模型的适用性。最终确立模型,利用所建立的模型对未来五个交易日股票价格进行预测,预测价格与实际股票价格误差进行对比,看其是否能反映出万达影业企业股票收盘价和股票的未来走势,帮助股民和投资者减小投资风险,提供投资参考。
(1)文献综述法。前期查阅有关基于ARIMA模型的影视企业股票分析和预测相关文献,阐述前人的研究观点和历程,对比分析不同学者之间的异同,为论文的进一步研究和书写奠定基础。
(2)统计模型法。将研究对象的相关变量进行统计分析和建模,本文收集股票价格相关数据建立ARIMA模型进行数据分析。
时间序列分析是按照历史数据构建合理的时间序列模型,用来预测未来发展和趋势变化的方法,当假定事务过去延续到未来时适用此方法。数据结果据有规律性和不规律性,时间序列往往分为趋势性、周期性、随机性和综合性。时间序列通常由趋势、季节变化、循环变动和不规则变动四种要素组成。为了进行时间序列分析,Box-Jenkins算法成为了较为完善的选择,算法中包含ARMA模型和ARIMA模型。在解决金融类相关问题时,所包含的两种模型应用较为广泛。
ARMA模型将AR和MA模型进行结合。所以,ARMA(p,q)的自相关系数是AR(p)自相关系数和MA(q)的自相关系数的结合。ARMA模型的性质表现为拖尾性和截尾性。当ARMA模型的自相关系数迅速减小,并且在一定滞后阶数后变得不显著,则该模型具有良好的拖尾性。当ARMA模型的自相关系数在某个滞后阶数后突然变为零,则该模型具有截尾性。拖尾性和截尾性可表示为:当p=0时截尾;当q=0时拖尾;当p,q均不等于0时拖尾。
AR(p)模型表达式为:
(2-1)
为平稳时间序列,
为误差值
表示待定系数,p表示阶数。
MA(q)模型表达式为:
(2-2)
为平稳时间序列,
为误差值
表示待定系数,q表示阶数。
ARMA模型是根据AR和MA模型有机组合而成的模型,主要用于描述平稳随机过程。ARMA(p,q)模型形式表达式为:
(2-3)
ARIMA是一种时间序列预测模型,其思想是通过对历史数据的分析,建立一个可靠的模型来预测未来的数据。ARIMA模型由三个部分组成:差分、自回归和移动平均。其中,差分是为了消除时间序列的趋势和季节性,自回归是用过去时间序列的值来预测未来时间序列的值,移动平均是用过去的“噪声”来预测未来的“噪声”。通过这些步骤,ARIMA模型可以对未来的时间序列数据进行准确的预测。
ARIMA模型被称为差分自回归移动平均模型,用于通过历史值和历史值上的分析预测误差来对现阶段做分析预测。当时间序列具有非季节性并且存在一定规律时可应用此模型进行中短期预测,ARIMA模型通过数字的形式将时间序列整体值的规律性表现出来,然后通过数学形式的研究对时间序列值进行短期预测。
AR(p)模型称为自回归模型,MA(q)模型称为滑动平均模型,ARIMA(p,d,q)称为自回归滑动平均模型。ARIMA是AR(p)和MA(q)模型的有机结合,AR是自回归过程,p为自回归阶数.MA为移动平均过程,q为移动平均阶数,d为差分次数。
ARIMA(p,d,q)模型可以表示为:
(2-4)
式中
表示不平稳序列
经过d次差分转化的平稳序列,
为误差,
和
为待定系数,P和q为模型阶数。
首先确定模型的平稳性,若序列不平稳,则需要进行差分并通过ADF检验计算P值,P大于0.05序列还不平稳则需要继续差分直至序列满足平稳性条件,此时差分阶数P通常小于2。然后,通过绘制ACF和PACF图来确定p、d、q的值,以拟合最初的模型,并进行可逆性和白噪声检验,确定序列是否为白噪声序列,若模型不满足可逆性和不能通过白噪声检验,则需要重新对其进行拟合直至模型通过检验。最后通过建立的ARIMA模型对未来数据进行预测,将预测值和实际值对比进行误差分析,最终确定所建立模型的可行性。
表3-1万达影业企业股票价格走势
项目 | 数据 | 说明 |
股票代码 | 7832 | 万代南梦宫在东京证券交易所的股票代码 |
近期股价表现 | ||
最新收盘价 | 4,795日元 | 2025年4月25日收盘价 |
今日涨跌幅 | 0.04% | 2025年4月25日涨跌幅 |
今日开盘价 | 4,803日元 | 2025年4月25日开盘价 |
今日最高价 | 4,840日元 | 2025年4月25日最高价 |
今日最低价 | 4,746日元 | 2025年4月25日最低价 |
历史股价表现 | ||
一年内最高价 | 5,300日元 | 2025年3月26日达到 |
一年内最低价 | 2,647日元 | 2024年某时段最低价 |
历史最高价 | 5,300日元 | 2025年3月26日达到 |
历史最低价 | 242日元 | 2010年10月29日达到 |
股价波动与估值 | ||
波动率 | 1.98% | 近期股价波动率 |
贝塔系数 | 0.64 | 衡量股票与大盘波动的相关性 |
市值 | 3.104万亿日元 | 2025年4月25日市值 |
财务指标 | ||
每股收益(TTM) | 259.04日元 | 2025年4月25日数据 |
市盈率(TTM) | 18.51 | 2025年4月25日数据 |
股息收益率 | 2.12% | 2023年数据 |
派息率 | 39.00% | 2023年数据 |
业绩增长 | ||
近一年每股收益同比增长 | 57.68% | 从2024年Q1至2025年Q1 |
近一年营收同比增长 | 24.83% | 从2024年Q1至2025年Q1 |
未来预测 | ||
下一份收益报告日期 | 2025年5月8日 | 公司预计发布日期 |
未来每股收益预计增长 | 4.95% | 2025年Q2与2024年Q2相比 |
根据表3-1的数据,万达影业(万代南梦宫)的股票价格走势显示出其在市场中的稳定性和增长潜力。截至2025年4月25日,其股票代码为7832,最新收盘价为4,795日元,当日涨跌幅仅为0.04%,表明股价波动较小。当日开盘价为4,803日元,最高价为4,840日元,最低价为4,746日元,整体价格区间较为稳定。从历史表现来看,过去一年内股价最高达到5,300日元(2025年3月26日),最低为2,647日元(2024年某时段),显示出较强的波动性,但近期股价已趋于稳定。
从估值和财务指标来看,万代南梦宫的市盈率(TTM)为18.51,每股收益(TTM)为259.04日元,显示出其良好的盈利能力和市场认可度。股息收益率为2.12%,派息率为39.00%,表明公司注重股东回报。此外,其市值达到3.104万亿日元,显示出其在行业中的重要地位。从业绩增长来看,近一年每股收益同比增长57.68%,营收同比增长24.83%,显示出公司强劲的增长势头。未来,公司预计在2025年5月8日发布下一份收益报告,且未来每股收益预计增长4.95%,表明市场对其未来发展持乐观态度。。
股票市场能够反映经济周期的变化,股票价格受经济周期的影响,可以间接的反应经济周期变化。股票价格变动一般发生在经济波动之前。在经济还在时期时,股票价格可能会出现下跌现象。投资者的主观判断会影响万达影业企业股票价格变动,经济因素对股票价格有着重要的影响。在经济处于衰退阶段时,万达影业企业金融产品供大于需,影视企业经营获取利润减少,导致建行金融产品减少。影视企业股息和红利会因此减少,股民大量抛售股票,股票价格出现大幅下跌。经济周期处于危机阶段,企业会因此出现大量破产倒闭,国家经济出现大萧条,股民对所持有股票上涨希望下降,将所持股票大量进行抛售,我国经济因此也处于混乱当中。当经济处于复苏阶段时,国家对政策和经济结构进行调整,股票购买量大量上涨,万达影业企业因此又能给股民分发股息和红利,股民对建行股票重燃希望,因此股价开始逐渐回升。当经济处于繁荣阶段时,金融产品为万达影业企业带来巨大的利润,股民数量增加,股票需求量增加,企业经营者从中获利增加,股票因此涨至峰值。
国内生产总值能够反映出一国经济状况。社会总攻击和总需求与国内生产总值协调变化。当GDP平稳增长时表明国家经济稳定且发展良好,人民对未来经济抱有良好的期望,当GDP经济不稳定时,短期对经济形式表现不明显,GDP对股价的影响是长远的,对于中短期股价反映较小,随着国内生产总值的快速平稳增长,万达影业企业的经营利润也随之呈现增长态势,投资者表现出积极的投资态度,大量购买万达影业企业的股票,以获取股息和红利增长,最终万达影业企业股票价格全面升值。
图3-32022年国内生产总值
表3-22024年一二季度股票价格走势
季度 | 平均收盘价(元) | 最高价(元) | 最低价(元) | 涨跌幅(%) |
2024年第一季度 | 24.99 | 25.47 | 23.76 | -0.76 |
2024年第二季度 | 26.31 | 26.89 | 26.01 | -0.42 |
2024年第三季度 | 26.42 | 26.58 | 26.12 | 1.15 |
2024年第四季度 | 26.31 | 26.89 | 26.01 | -0.42 |
图3-4季度股票情况
由图3-2和图3-3对比可知2024年第一季度国内生产总值较为稳定,在第一季度时股票价格呈现出稳定并且在季度末呈现出股票上涨姿态,当到第二季度时国内生产总值相对于第一季度是下降的,投资者对万达影业企业投资较为消极在第二季度初始开始呈现出下降趋势。
利率上升,企业融资贷款所需成本增加,企业资金短缺难以维持日常运行,为了获取更多的资金企业只能缩减规模,使得企业利润减少最终使得企业股票价格下跌,反之上涨。利率变动会影响股票折现率,利率增长会导致折现率变高,从而增加变现成本,导致股票价格下跌,反之则会有上涨。
股票价格的波动受到货币政策的直接影响。在我国,货币政策与股票价格之间存在着密切关联。中央影视企业通过控制货币供应量和利用存款准备金制度和公开市场操作来进行宏观调控,对经济发展和货币稳定产生深远影响。扩张货币政策会导致股票价格上涨,因为货币供应量增加,货币供应量的增加带来了更多的投资机会,大量的资金涌入股票市场,从而促进了股票购买量的增长,最终导致了股票价格的上涨。相反,若实施紧缩的货币政策,则可能引发股票价格的下跌。
每股净资产时每股股票的价值的体现,一般而言,每股净资产值越高,股票价值就越高,反之亦然。在我国股市上,每股净资产作为上市公司重要的财务指标之一,已经越来越受到投资者的关注,并成为上市公司选择股票发行价格时不可缺少的依据。每股净资产值越高,说明企业的利润越高,风险抵御能力越强。但每股净资产值一般都比股票价格低,当每股净资产值高于股票价格时,股民所拥有的股东权益会高于实际付出成本,股票持有者会从中受益。在市场缺乏投资信心的情况下结论不一定成立。因为人们会对公司能否维持净资产持有怀疑,担心其净资产下降。这时股票价格大于每股净资产,实际上股票持有者不获利。万达影业企业每股净资产为10.60元远远大于股票价格,此时的股票称为破净股,出现这种情况可能是万达影业企业受到了宏观经济紧缩冲击影响较大,投资者面对这种情况要具备长期投资的思想。
每股税后利润也叫做每股收益,收益水平是公司经营状况和盈利的直接反应。当收益高时公司投资价值也会变大,投资者会买进股票,因此会导致股票价格上涨,反之则会导致股票价格下降。收益高低也是一个公司长期投资价值的反应。当收益保持稳定增长时,长期投资价值变高,股息和红利随之变高,投资者大量购买股票,股票价格也会上升。因万达影业企业第四季度数据还未给出,所以选取第三季度季度报作为样本数据,万达影业企业第三季度每股税后利润为0.99,所选42家影视企业每股税后利润中位数为0.76,可以看出万达影业企业在众多影视企业股票行列中处于较高水平,因此万达影业企业股票投资价值也会变高,股票会出现价格上涨趋势,投资者可以因此买进股票。
投资者投资才能获得保障,盈利能力在企业经营中占有较大比例,上市公司盈利能力最主要体现在每股税后利润。代表的是普通股一年中获得的利润,可以帮助投资者评估公司发展潜力,并以此做出投资决策,是重要的财务指标之一。万达影业企业每股税后利润为1.28元远远大于中位数,从中可以看出万达影业企业股票盈利能力较强,投资者投资万达影业企业是一个不错的选择。
总资产周转率是资金营运能力最主要体现。投资者只有在企业资金高速运营的情况下才能获得更多的资金回报。万达影业企业总资产周转率为0.02次,影视企业总资产周转率相对于其他企业较低,是因为其性质决定的,影视企业中存款大部分为长期存款,短期存款较少,影视企业资金周转不快,影视企业利润主要来源于存贷利息差,万达影业企业相对于其它影视企业资本充足率处于顶尖,总资产周转率相对于其它影视企业较高,投资万达影业企业会获得比其它影视企业更多的回报。
资金周转能力体现的是企业短期偿债能力和资金变现能力,企业要进行变现和偿还债务必须要保证拥有一定数量的流动资产,影视企业作为一家特殊的金融机构,影视企业负债主要来源于影视企业的存款,需要部分流动资产来满足客户取款的需求,影视企业缺乏流动资产会导致挤兑现象的发生。流动比率与速动比率反映了短期偿债能力。企业偿债能力受多种因素影响。企业偿债能力的大小主要表现为企业流动资产的多少,两者呈反比,流动资产比例越大,短期内企业需要清偿的负债越少,企业偿还债务的能力越强,给企业带来的投资风险越小。
上市公司营运资金主要来源于发行股票和证券,因此上市公司也是债务人,投资者会特别关注公司的偿债能力,假如公司的偿债能力强,资金周转灵活度会相应提高,经营活动能力变强,那么就会吸引投资者进行投资,企业偿债能力体现在流动比率、速动比率和资产负债率。万达影业企业资产负债率为91.8,所需选42家影视企业中位数为91.955,万达影业企业资产负债率小于影视企业股票资产负债率的中位数,可以说明万达影业企业投资风险相对而言投资风险较小,偿债能力较强,资金周转较为灵活,可以对万达影业企业股票进行投资。
- 基于ARIMA模型的万达影业企业股票价格预测
本章以中国复兴影视股票的历史收盘为例,研究目的是对其变化趋势进行分析,并做出预测。因为中国复兴影视股票历史悠久,数据来源多样,相对于其他有较好的预测价值和意义。原始数据为2023年6月1日到2024年2月8日中国复兴影视所公布的股票开盘价格。将原始数据分为两部分,一部分做训练,另一部分做测试。首先根据被分析数据建立时间序列模型,并进行预测,然后将预测数据和检验数据相比较,分析误差。
4.1.1股票数据概述
1.股票数据的定义:股票数据指的是与股票市场相关的各种信息和数值,包括股票价格、成交量、公司财务数据等。
2.股票数据的意义:股市信息是投资人判断股市走势和投资标的最主要的参考指标。通过对上述的资料的研究,投资者能够更好的了解市场动态,评估投资风险,进而获得最大的回报。
3.股票数据的来源:股票数据主要来源于证券交易所、金融数据提供商、公司公告等。
4.股票代码:每只股票在证券交易所都有独一无二的代码,用于标识和交易。5.股票名称:代表公司的名称,通常也反映了其主要业务或行业。
1.基本面分析:在对企业的财务数据、经营状况等进行分析的基础上,投资人可以企业的价值以及未来的发展潜能进行评价,以此来挑选出有投资价值的股份。
2.风险管理:通过对股市的资料进行分析,投资者能够实时地察觉到股市的异常波动,企业潜在的危险,以便对自己的资产进行合理的配置,减少投资的风险。
3.技术分析:投资者可以利用历史股票价格、成交量等数据,综合图表、指标等工具预测股票价格的末来走势,制定买卖策略。总之,股市信息是一个非常有价值的信息来源。对上述信息的把握与分析,可以帮助投资者更加精准地把握股市的发展趋势,达到自己的投资目的。
股价指数就是我们通常所称的指标。指的是一个显示股价波动的指标,以作为一个参照。因为股价的波动性,使得投资人不可避免地要面对股价的波动。针对特定个股的股价变动,投资人易于理解,但针对不同个股的股价变动,则需一一了解;这并不是一件简单的事情,而是一件令人厌烦的事情。在这样的形势下,有些金融服务业便充分发挥其专业特长及对市场的了解,制作股价指数,并向社会公布;用来表示物价的变化。通过这种预测分析方法,这可以帮助投资者测试自己的投资结果,接下来预测股票价格的走势。于此同时,大众记者媒体、上市公司,以及参政人员,均可以通过参考它的变动,对中国及社会的发展,不管是经济或是政治层面有个基本的预测。股票价格指数包括“股价指数”和“股价平均数”。股价指数可以反映出股价随时间变化而变化,是报告期的股价与某一特定时期的股价的比值,将二者比值乘以该基期的指数值,即为该报告期的股票价格指数。我们通过分析股价指数数值的变动趋势和程度,进而可以得到报告期价格与基期股价相比的变动程度和方向。股价平均数是将不同时点上股票价格数量差异抽象化,指股价在某一时间内所处的总体股价,常用算术平均值。我们可以通过比较各个时间段的平均股价,来判断其走势及走势。
4.1.4股市影响因素分析
股票价格的变动对应着证券市场的变动。与此同时,股价波动也是股票买着最为关切的一个点。股价的变动受到各种因素的影响,既有经济方面的,也有非经济方面的,这无疑大大帮助投资者的投资减小错误,提高收益的可能性。股票价格不仅围绕其内在价格变动,也随着投资者对各种因素的判断得变化而变化。同时股票价格的变动是所有因素的合力结果。我们将影响因素根据内容性质分为微观因素、宏观因素、市场因素、非经济因素四个方面。
4.1.5股票预测方法
对股票的预测基于这三个假设:市场行为包含所以信息:股价变化可以找到趋势:历史常常会重演。股票预测方法通常是指,通过依据最为简单的金融市场的供需波动程度和规律,探究出对市场发展趋势进行分析和预测的一种金融市场分析方法。它是根据整个市场的供应关系,研究市场变动。技术分析法是通过分析自身走势,预测未来趋势,也就是说,它最重要的是,将每天的交易状况,包括价格变动、交易量和持仓数量的变动等数据,根据时间的先后次序,画出图表或图表,或者是建立一个特定的指标体系,再对这些图表、图表或指标体系进行分析和研究,从而实现对未来价格趋势的预测。股价在近期不会因为宏观要素的变动而改变,而我们对股价指数进行预测的资料则是基于时间的数据,可以利用时间序列分析方法对股价进行分析和研究。
本研究使用的数据是万达影业的股票收盘价格,共收集了300个交易日的数据。数据的时间跨度涵盖了万达影业在一段相对较长的时期内的价格波动情况,能够较为全面地反映该股票的价格变动特征。收集的原始数据为日度收盘价,单位为元人民币。在进行数据描述统计之前,首先对数据进行了初步的整理和可视化,以便直观地了解数据的基本特征。
表格1 万达影业股票价格描述性统计结果
统计量 | 值 |
样本数 | 300 |
均值 | 24.05 |
标准差 | 1.46 |
最小值 | 21.19 |
第一四分位数 | 23.07 |
中位数 | 23.78 |
第三四分位数 | 24.85 |
最大值 | 29.20 |
偏度 | 0.57 |
峰度 | 3.15 |
从表格2-1的描述性统计结果可以看出,万达影业在观测期内的平均股价为24.05元,标准差为1.46元,表明股价波动相对较为温和。股价的最低点为21.19元,最高点达到29.20元,价格范围跨度为8.01元,显示在观测期内股价确实存在较大的波动。从分位数来看,25%的观测值低于23.07元,50%的观测值低于23.78元,75%的观测值低于24.85元,说明股价分布整体呈现右偏特征,这一点也通过正的偏度值(0.57)得到了确认。峰度值为3.15,略高于正态分布的峰度值3,表明该股票价格分布的尖峰性略高于正态分布,但接近正态分布,这意味着极端值出现的概率与正态分布相比略高。
4.3ADF检验结果
为了定量评估万达影业股票价格序列的平稳性,进行了增广迪基-富勒(ADF)检验。ADF检验的原假设是时间序列存在单位根,即非平稳;备择假设是时间序列不存在单位根,即平稳。检验结果如下:
表格2-2 万达影业股票价格ADF检验结果
检验统计量 | p值 | 1%临界值 | 5%临界值 | 10%临界值 | 结论 |
-2.341 | 0.157 | -3.458 | -2.869 | -2.571 | 非平稳 |
从表格2-2可以看出,ADF检验的p值为0.157,大于0.05的显著性水平,因此无法拒绝原假设,即该时间序列是非平稳的。这一结果与先前对时序图和自相关函数图的直观判断一致,确认了万达影业股票价格序列的非平稳特性。这意味着在应用ARIMA模型之前,需要对原始序列进行差分处理,以获得平稳序列。
为了确定适当的差分阶数,对原始序列进行了一阶差分,并再次应用ADF检验评估差分后序列的平稳性:
表格3 万达影业股票价格一阶差分后的ADF检验结果
检验统计量 | p值 | 1%临界值 | 5%临界值 | 10%临界值 | 结论 |
-12.876 | 0.000 | -3.458 | -2.869 | -2.571 | 平稳 |
一阶差分后的ADF检验p值为0.000,显著小于0.05的显著性水平,表明可以拒绝原假设,即一阶差分后的序列是平稳的。这一结果表明万达影业股票价格序列是一阶单整序列I(1),适合使用ARIMA(p,1,q)模型进行建模。
4.4的Ljung-Box Q检验
除了平稳性检验外,还需要评估时间序列的随机性和白噪声特性。为此,进行了Ljung-Box Q检验,该检验的原假设是时间序列为白噪声序列,备择假设是时间序列不是白噪声序列。
表格2-4 万达影业股票价格一阶差分后的Ljung-Box Q检验结果
滞后阶数 | Q统计量 | p值 | 结论 |
10 | 45.782 | 0.000 | 非白噪声 |
20 | 67.319 | 0.000 | 非白噪声 |
30 | 82.154 | 0.000 | 非白噪声 |
Ljung-Box Q检验结果显示,在不同的滞后阶数下,p值均显著小于0.05,因此可以拒绝原假设,表明一阶差分后的序列不是白噪声序列,存在可以被模型捕捉的模式。这一结果进一步支持了使用ARIMA模型对该序列进行建模的合理性。
为了更全面地了解差分后序列的特性,绘制了一阶差分序列的时序图、自相关函数(ACF)图和偏自相关函数(PACF)图:
通过观察ACF和PACF图,可以初步判断ARIMA模型的潜在阶数。ACF图显示自相关系数在滞后1、2、3期有显著性,而PACF图显示偏自相关系数在滞后1、2期有显著性,这为后续确定ARIMA模型的p和q值提供了重要参考。基于上述分析,万达影业股票价格序列适合使用ARIMA(p,1,q)模型进行建模,其中p和q的具体取值将在模型识别阶段通过信息准则和残差诊断进行确定。
4.4模型识别与选择
模型识别是ARIMA建模过程中的关键步骤,主要目的是确定模型的阶数p、d和q。在本研究中,通过单位根检验已经确定d=1,接下来需要确定p和q的值。
模型阶数的选择通常基于自相关函数(ACF)和偏自相关函数(PACF)的特征,以及信息准则如赤池信息准则(AIC)和贝叶斯信息准则(BIC)。一般而言,ACF和PACF的显著延迟图样可以提供p和q的初步估计:
1. 如果ACF呈指数衰减或震荡衰减,而PACF在滞后p之后截尾,则可能是AR(p)过程;
2. 如果PACF呈指数衰减或震荡衰减,而ACF在滞后q之后截尾,则可能是MA(q)过程;
3. 如果ACF和PACF都呈指数衰减或震荡衰减,则可能是ARMA(p,q)过程。
为了更客观地选择最佳模型,我们将尝试拟合多个候选ARIMA模型,并基于AIC和BIC准则进行比较:
表格3-1 候选ARIMA模型的AIC和BIC值
模型 | AIC | BIC |
ARIMA(1,1,0) | 897.243 | 908.561 |
ARIMA(0,1,1) | 889.127 | 900.445 |
ARIMA(1,1,1) | 885.692 | 900.670 |
ARIMA(2,1,0) | 891.456 | 906.434 |
ARIMA(0,1,2) | 887.543 | 902.521 |
ARIMA(2,1,1) | 884.321 | 902.959 |
ARIMA(1,1,2) | 884.015 | 902.653 |
ARIMA(2,1,2) | 883.876 | 906.174 |
从表格3-1可以看出,ARIMA(2,1,2)模型的AIC值最小,为883.876,但其BIC值相对较高。考虑到模型的简洁性和解释力,ARIMA(1,1,1)模型在AIC和BIC之间取得了较好的平衡,是一个较为合理的选择。因此,我们选择ARIMA(1,1,1)作为万达影业股票价格预测的初始模型。
4.5参数估计与模型诊断
在确定了ARIMA(1,1,1)模型作为初始模型后,下一步是估计模型参数并进行模型诊断,以评估模型是否适当。使用最大似然估计方法,得到的ARIMA(1,1,1)模型参数估计结果如下:
表格3-2 ARIMA(1,1,1)模型参数估计结果
参数 | 估计值 | 标准误 | t值 | p值 |
AR(1) | 0.485 | 0.082 | 5.914 | 0.000 |
MA(1) | -0.856 | 0.051 | -16.784 | 0.000 |
常数项 | 0.002 | 0.015 | 0.133 | 0.894 |
从表格3-2可以看出,AR(1)和MA(1)参数的p值均显著小于0.05,表明这些参数在统计上显著。而常数项的p值为0.894,远大于0.05,表明该参数在统计上不显著。因此,我们可以考虑移除常数项,重新估计模型。
为了评估模型的适当性,需要对模型残差进行诊断,检验其是否符合白噪声假设。进行Ljung-Box Q检验,结果如下:
表格3-3 ARIMA(1,1,1)模型残差的Ljung-Box Q检验结果
滞后阶数 | Q统计量 | p值 | 结论 |
10 | 8.431 | 0.587 | 白噪声 |
20 | 17.623 | 0.547 | 白噪声 |
30 | 27.892 | 0.524 | 白噪声 |
Ljung-Box Q检验结果显示,在不同的滞后阶数下,p值均大于0.05,因此无法拒绝原假设,表明模型残差是白噪声序列,模型拟合良好。
还绘制了残差的时序图、自相关函数图和正态Q-Q图,以进一步评估残差的性质:
从残差的时序图和ACF图可以看出,残差序列基本上表现为白噪声特性,没有明显的自相关模式。正态Q-Q图显示残差大致沿着45度线分布,表明残差的分布接近正态分布,但在尾部有轻微偏离。总体而言,ARIMA(1,1,1)模型对万达影业股票价格序列的拟合是合适的。
4.6预测结果分析
表格4-2 基于训练集的ARIMA(1,1,1)模型参数估计结果
参数 | 估计值 | 标准误 | t值 | p值 |
AR(1) | 0.462 | 0.093 | 4.968 | 0.000 |
MA(1) | -0.849 | 0.057 | -14.895 | 0.000 |
方差 | 0.225 | - | - | - |
对数似然值 | -698.321 | - | - | - |
AIC | 1402.642 | - | - | - |
BIC | 1413.875 | - | - | - |
表格4-2显示,基于训练集拟合的ARIMA(1,1,1)模型的AR(1)和MA(1)参数均在统计上显著,模型拟合良好。接下来,我们将对模型残差进行诊断,以确保模型假设的有效性:
残差的自相关函数图显示,各滞后期的自相关系数基本落在置信区间内,没有显著的自相关性,表明模型残差接近白噪声特性。这进一步支持了ARIMA(1,1,1)模型对万达影业股票价格序列的适用性。
在验证了ARIMA(1,1,1)模型在训练集上的适用性后,接下来使用该模型对测试集进行预测,并评估预测结果。预测结果与实际值的比较如下:
表格4-3 测试集上的预测结果
时间点 | 实际值 | 预测值 | 预测误差 | 预测误差百分比 |
T241 | 25.31 | 25.12 | 0.19 | 0.75% |
T242 | 24.83 | 25.22 | -0.39 | -1.57% |
T243 | 25.75 | 24.92 | 0.83 | 3.22% |
T244 | 25.46 | 25.44 | 0.02 | 0.08% |
T245 | 25.51 | 25.45 | 0.06 | 0.24% |
... | ... | ... | ... | ... |
T296 | 23.95 | 23.82 | 0.13 | 0.54% |
T297 | 24.00 | 23.93 | 0.07 | 0.29% |
T298 | 23.70 | 23.97 | -0.27 | -1.14% |
为了更直观地比较预测值与实际值之间的关系,绘制了预测值与实际值的时序对比图:
从图4-2可以看出,ARIMA(1,1,1)模型的预测值总体上能够较好地跟踪实际值的变动趋势,但在某些转折点处存在一定的预测误差。这是因为ARIMA模型主要基于历史数据的内在模式进行预测,对于由外部因素(如市场突发事件、政策变化等)引起的价格急剧变动,预测能力有限。
从时序图可以观察到,万达影业股票价格呈现一定的波动性,整体趋势并不明显,但有局部的上升和下降趋势。为了进一步判断时间序列的平稳性,我们进行了ADF(Augmented Dickey-Fuller)检验,结果如下表所示:
表格4-1:万达影业股票价格的ADF检验结果
检验类型 | 检验统计量 | p值 | 临界值(1%) | 临界值(5%) | 临界值(10%) | 结论 |
原始序列 | -2.467 | 0.124 | -3.458 | -2.874 | -2.573 | 非平稳 |
一阶差分 | -15.326 | 0.000 | -3.458 | -2.874 | -2.573 | 平稳 |
ADF检验结果表明,原始的股票价格序列不满足平稳性要求(p值>0.05),需要进行差分处理。对原始序列进行一阶差分后,ADF检验结果显示差分序列已经平稳(p值<0.05),可以进行后续的ARIMA模型构建。
为了更直观地观察序列的平稳性变化,我们绘制了原始序列和一阶差分序列的时序图、自相关函数(ACF)和偏自相关函数(PACF)图。
通过对比可以明显看出,一阶差分后的序列围绕零均值波动,无明显趋势,且ACF和PACF图显示自相关性大幅减弱,这些特征都表明差分序列已达到平稳性要求。
4.2 ARIMA模型识别与选择
基于平稳性检验结果,我们确定差分阶数d=1,接下来需要确定自回归阶数p和移动平均阶数q。通过分析一阶差分序列的ACF和PACF图,我们可以初步判断合适的p和q值。结合理论知识和实际观察,我们选择了多个候选ARIMA模型进行比较:
表格4-2:ARIMA模型比较与选择
模型 | AIC | BIC | HQIC | RMSE | MAE |
ARIMA(1,1,0) | 368.42 | 379.15 | 372.76 | 0.578 | 0.425 |
ARIMA(0,1,1) | 366.18 | 376.91 | 370.52 | 0.572 | 0.418 |
ARIMA(1,1,1) | 365.28 | 379.38 | 370.79 | 0.568 | 0.412 |
ARIMA(2,1,0) | 367.95 | 382.04 | 373.45 | 0.573 | 0.420 |
ARIMA(0,1,2) | 368.10 | 382.19 | 373.60 | 0.574 | 0.421 |
ARIMA(2,1,2) | 363.47 | 384.92 | 372.13 | 0.560 | 0.405 |
通过比较不同模型的AIC(赤池信息准则)、BIC(贝叶斯信息准则)、HQIC(汉南-奎因信息准则)以及RMSE(均方根误差)、MAE(平均绝对误差)等指标,我们发现ARIMA(1,1,1)模型在各项指标上表现较好。虽然ARIMA(2,1,2)模型的AIC值最小,但考虑到模型的简约性原则(即在解释能力相近的情况下,选择参数更少的模型),以及BIC值(BIC对参数数量的惩罚更严格)的综合比较,最终选择ARIMA(1,1,1)作为最优模型。
ARIMA(1,1,1)模型的数学表达式为:
$(1-\phi_1B)(1-B)y_t = (1+\theta_1B)\varepsilon_t$
展开后得到:
4.8 参数估计与模型诊断
利用最大似然估计法,我们得到ARIMA(1,1,1)模型的参数估计结果如下:
表格4-3:ARIMA(1,1,1)模型参数估计结果
参数 | 估计值 | 标准误 | z值 | p值 | 95%置信区间 |
常数项 | 0.0024 | 0.0167 | 0.144 | 0.886 | [-0.0303, 0.0351] |
AR(1) | 0.4216 | 0.1359 | 3.102 | 0.002 | [0.1552, 0.6880] |
MA(1) | -0.8274 | 0.0924 | -8.954 | 0.000 | [-1.0086, -0.6462] |
方差 | 0.3226 | 0.0285 | - | - | [0.2667, 0.3785] |
从参数估计结果可以看出,AR(1)和MA(1)参数均在统计上显著(p值<0.05),而常数项不显著(p值>0.05)。这表明该ARIMA(1,1,1)模型是适合的,其中AR(1)项反映了股票价格变动的自回归特性,MA(1)项则捕捉了随机冲击的短期影响。
接下来,我们对ARIMA(1,1,1)模型进行诊断,主要检验残差是否为白噪声。
表格4-4:残差的Ljung-Box Q检验结果
滞后阶数 | Q统计量 | p值 | 结论 |
5 | 4.238 | 0.375 | 接受原假设,残差为白噪声 |
10 | 8.654 | 0.565 | 接受原假设,残差为白噪声 |
15 | 12.789 | 0.618 | 接受原假设,残差为白噪声 |
20 | 17.432 | 0.625 | 接受原假设,残差为白噪声 |
残差图显示,残差围绕零均值波动,无明显的模式;ACF和PACF图中,各滞后期的自相关系数基本都在置信区间内,没有显著的自相关性;Ljung-Box Q检验结果表明,在不同滞后阶数下,残差序列均为白噪声(p值>0.05)。这些结果表明,ARIMA(1,1,1)模型对万达影业股票价格数据的拟合效果良好。
4.9 预测结果与分析
在完成模型诊断后,我们使用ARIMA(1,1,1)模型对万达影业股票价格进行了预测。我们将数据集划分为训练集(90%)和测试集(10%),利用训练集建立模型,然后在测试集上验证预测效果。
表格4-5:预测精度评估
评估指标 | 训练集 | 测试集 |
RMSE | 0.568 | 0.612 |
MAE | 0.412 | 0.453 |
MAPE | 1.72% | 1.88% |
方向准确率 | 64.3% | 61.5% |
从预测结果来看,ARIMA(1,1,1)模型在测试集上的表现也相当不错。均方根误差(RMSE)为0.612,平均绝对误差(MAE)为0.453,平均绝对百分比误差(MAPE)为1.88%,方向准确率(即预测涨跌方向与实际一致的比例)达到61.5%。这些指标表明,该模型对万达影业股票价格的短期预测具有较高的准确性。
值得注意的是,股票价格受多种因素影响,包括市场情绪、政策变化、公司基本面等,纯粹基于历史价格数据的ARIMA模型虽然能够捕捉价格变动的时间特性,但难以考虑这些外部因素的影响。因此,在实际应用中,ARIMA模型的预测结果应与其他分析方法相结合,以提高预测的全面性和准确性。
影视企业业是我国经济当中重要的行业,对我国经济发展和综合国力有着重要的影响,拥有着重要的地位,影视企业业数量多规模大,在股票市场中占有较大的比重,股票价格波动也会影响股市的指数和股价的波动,中国证券市场起步晚发展尚未成熟,存在众多问题,所以研究万达影业企业股票价格影响因素对股票市场健康发展和资源的配置拥有重要的意义,也能为投资者提供合理的参考建议。本文通过对万达影业企业内外部影响因素进行分析,外部影响因素主要有经济因素,国内生产总值,利率和货币政策。国内生产总值对万达影业企业股票价格影响较为直观,影视企业的特殊性质使得影视企业股票受货币政策影响较大,投资者应时刻关注货币政策和国内生产总值的变化。内部影响因素主要为每股净资产,每股税后利润,盈利能力,资金运营和周转能力,偿债能力,万达影业企业的每股净资产是是远远高于股票价格的,这表明万达影业企业受到了宏观经济的影响和冲击,资金运营能力主要体现在资金周转率,影视企业的性质决定了万达影业企业资金周转率相对于其他企业较低,通过选取42家影视企业股票做对比分析,万达影业企业资本充足率处于顶尖,总资产周转率相对于其他影视企业较高,资金运营能力较强。取42家影视企业资产负债率、每股税后利润中位数,万达影业企业资产负债率低于42家影视企业的中位数,每股税后利润高于42家影视企业的中位数,从中可以看出投资者投资万达影业企业股票相比于其他影视企业收益更加稳定。万达影业企业股票波动较小不会出现断崖式下跌和上升,股价在六元左右徘徊不会跌破五元,希望风险低和不追求较高收益的投资者可以选择万达影业企业进行长期投资,时刻关注外部经济动向和内部指标变化做出投资决策。在财务状况方面,万达影业企业的财务状况非常稳健,资本充足、不良贷款率低、经营利润持续上升。这是一个良好的信号,表明万达影业企业对抗财务风险能力较强,在影视企业业内处于领先。
通过构建ARIMA模型以中国万达影业企业2022年第四季度股票收盘价格为样本数据,预测短期内万达影业企业股票价格的变化,为投资者投资提供参考,股票作为样本数据通常为不平稳的通过一阶差分得到平稳序列,然后通过拟合优度的大小构建出ARIMA(0,1,2)模型,最后利用所建立的模型进行对未来5期进行预测,结果表明ARIMA模型对股票价格拥有良好的短期预测效果,对短期规律预测更准确。并为他们的投资提供具体的参考和投资方向。
总而言之,中国万达影业企业是业内知名的机构,其资产规模和竞争力遥遥领先于其它影视企业。尽管存在某些不确定性因素,但根据影视企业投资,保持稳健的投资策略是值得考虑的。
万达影业企业股票在众多影视企业股票排行中名列前茅,并且在未来仍然据有巨大的潜力和机会,通过分析可以看出万达影业企业股票长期处于稳定状态,波动相对而言较小,风险小的同时也会带来劣势,投资者所获得的收益较小,通过分析内外部外部因素对万达影业企业的影响发现,万达影业企业股票受国家政策影响较大,为此万达影业企业要充分重视货币政策和宏观调控对公司的影响,注意防范化解金融风险,加强对金融的监管,完善监管制度,维护金融稳定。面对宏观经济大局的影响要及时进行调整,避免宏观经济对万达影业企业每股净资产的冲击,提高本行的股票价值。在客户服务方面,应该注重提高服务质量,例如提供更快、更高效、更个性化的客户服务,提升客户满意度,同时倡导可持续的金融实践。在经营方面,应该增强创新意识,加大创新思维,积极主动地研发新产品满足客户的不同需要,在数字领域开拓创新以此提高市场竞争力。
通过对参考文献的搜寻发现我国对时间序列研究内容相对而言较少,理论和实际结合有待提高,因此,本文对万达影业企业股票价格影响因素进行了深度的分析,对股票的分析不能仅仅依赖于模型的预测,还要综合考虑内外部对股票价格的影响,同样在时间序列研究中不能仅仅分析时间因素也要综合考虑使得结果更为准确。