机器学习概率论基础

(补充:
(1)数学期望-----即所有样本的均值
(2)方差------------即样本与均值的差的平方的和
(3)标准差---------即对方差开2次根号)


0-1分布(伯努利分布、两点分布)-----离散概率分布

若随机变量X只取两个可能值0,1 ,且

  • P{X = 1} = p,P{X = 0} = q

其中0<p<1,q = 1 - p,则称X服从0-1分布

伯努利分布的数学期望与方差





二项分布-----其本质就是n重伯努利实验-----离散概率分布

若随机变量X可能取值0,1,2...,n且X分布规律为

(n是实验次数,k是n次实验中成功的次数)

其中0<p<1, p+q = 1, 则称X服从参数为   n,p的二项分布。

二项分布的数学期望与方差





泊松分布(用以描述   “单位时间或单位空间内,某一事件发生的次数”   这样的问题)-----离散概率分布

若随机变量X的可能取值0,1,2,...,n,X的分布规律为


其中,则称X服从参数为的泊松分布。记为

二项分布与泊松分布的关系

泊松分布的数学期望与方差





补充:概率密度

如果对于随机变量X的分布函数F(X),存在非负函数f(x),使得对于任意实数x,有

则称X为连续性随机变量,其中函数f(x)称为X的概率密度函数。


在数学中,连续型随机变量概率密度函数是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。


概率密度函数并没有实质的意义,只是对于连续性随机变量,我们关心他在某一点取值的问题没有太大的意义,而是关心它在某一区间上取值的问题,故引入了概率密度函数。)






正态分布(高斯分布---Gauss)----连续概率分布

若随机变量X的概率密度函数为

,则称X服从的正态分布,记为



正态密度函数图形的性质:


(1)曲线关于直线对称,这表明:对于任意的h>0,有

(2)当时,f(x)取到最大值,x离越远,f(x)的值就越小,这表明,对于同样长度的区间,当区间离越远时,随机变量X落在该区间中的概率就越小。

(3)曲线y = f(x)在处有拐点;曲线y = f(x)以OX轴为渐进线。

(4)若固定,而改变的值,则发f(x)的图形沿x轴平行移动,但不改变其形状。因此y = f(x)图形的位置完全由参数所确定。

(5)若固定,而改变的值,由于f(x)的最大值为可知,当越小时,y = f(x)的图形越陡,因而X落在附近的概率越大;反之,当越大时,y = f(x)的图形越平坦,这表明X的取值越分散。


标准正态分布

当参数时,称随机变量X服从标准正态分布,记作。其密度函数表示为:
标准正态分布的密度函数关于y轴对称:

标准正态分布的分布函数表示为:


正态分布的数学期望与方差











下面两个机器学习中不常用

均匀分布

设随机变量的概率密度为则称X服从区间[a,b]上的均匀分布,
概率密度函数图:

服从均匀分布的随机变量X的分布函数为:                    
                               


均匀分布的数学期望与方差




指数分布

设连续性随机变量X具有概率密度,则称X服从参数为的指数分布,记作
其分布函数为:
指数分布的数学期望和方差
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值