CRF(radar camera fusion)雷达摄像头融合网络论文解读

一.文章思想

通过融合网络层中的相机数据和投影稀疏雷达数据来增强当前的2D目标检测网络。所提出的CameraRadarFusionNet(CRF-Net)自动学习传感器数据融合在哪个级别对检测结果最有利。此外,我们还介绍了BlackIn,这是一种受dropout启发的培训策略,它将学习重点放在特定传感器类型也就是雷达上,通过同时停用相机图像数据的所有输入神经元,用于随机训练步骤。网络更加依赖雷达数据。目标是让网络了解稀疏雷达数据的信息价值

借鉴了:

a)将雷达数据投影到地面,也就是垂直于图像的平面;

b)3d激光雷达目标检测的将非结构化激光点云转化为规则网格的思想;

c)网络可以在网络中学习优化网络的深度;

二.网络结构

1.主干部分为VGG与FPN:

FPN:

解释一下FPN:

利用FPN构建Faster R-CNN检测器步骤

    首先,选择一张需要处理的图片,然后对该图片进行预处理操作;
    然后ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值