文章目录
- Network
-
- SNE-RoadSeg
- LidCamNet
- Road segmentation with image-LiDAR data fusion in deep neural network
- Fast Lidar-Camera Fusion for Road Detection by CNN and Spherical Coordinate Transformation
- Multi-Stage Residual Fusion Network for LIDAR-Camera Road Detection
- A fusion network for road detection via spatial propagation and spatial transformation
- 3-D LiDAR + Monocular Camera: An Inverse-Depth-Induced Fusion Framework for Urban Road Detection
- CRF
- 其他
- 总结
本博客列举一些激光雷达-相机融合的方法,主要是针对Road Detection问题的。其实Road Detection是属于Semantic Segmentation问题的,只是需要划分的就是两类,一个是道路,一个是非道路。目前主流方法当然是CNN,需要大量的数据用来训练。另外还有就是使用CRF。
Network
SNE-RoadSeg
文章:SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentation for Accurate Freespace Detection
发表:ECCV, 2020
文章的具体解读可以看我另一篇博客。这里就简述一下其方法:
网络的输入是两种图,一种是RGB,另一种是Depth。文章中并没有直接用Depth,而是通过SNE的变换用Depth图提取了pixel-wise的法向量。然后用两个ResNet做Encoder,Decoder是用DenseNet的形式构建的。
虽然本文不是LiDAR和Camera的Fusion,但是Kitti不提供Depth Image,肯定是通过某种方法用LiDAR的数据恢复出来的,文章中没细说。
LidCamNet
文章:LIDAR–camera fusion for road detection using fully convolutional neural networks
发表:Robotics and Autonomous Systems, 2019
该文章提出的方法首先是将LiDAR获取的Point Cloud转为Depth Image,具体的方法可参考文章中的Section 4,思路仍然是对齐LiDAR和Camera的数据,然后把LiDAR投影上去,最后再插值/补齐空洞得到稠密的Depth Image。文章中给出了他们做的引文:Pedestrian detection combining rgb and dense lidar data, in: Intelligent Robots and Systems (IROS 2014)。得到的效果图如下:
然后来介绍一下网络,网络也非常简单:
Encoder和Decoder就是FCN,其中L6-L14是3x3的Dilated Convolution Layer。本文提出来Cross Fusion来融合两种数据:
也就是说,其实每个尺度的RGB和Depth的特征图都做了学习权重的pixel-wise addition。
Road segmentation with image-LiDAR data fusion in deep neural network
文章:Road segmentation with image-LiDAR data fusion in deep neural network
发表:Multimedia Tools and Applications,2019
本方法仍然是将LiDAR投影到Image上做的。具体网络如下:
使用ResNet-50做Encoder,得到1/4~1/32的feature map。然后再使用多个RFU来融合LiDAR数据和上采样。RFU具体见下图:
可以看到,RFU有两个作用:1)融合低分辨率的高分辨的图像,2)融合同分辨率的来自image和lidar的feature map。其中image feature maps是由Encoder输出的,LiDAR points projection则是通过投影进,然后缩放得到的。也就是说,其实是用LiDAR points投影得到了一个深度图,然后对深度图做了图像金字塔。
本文区别于其他方法在于