【论文阅读】【综述】激光雷达-相机融合的道路检测方法

本文概述了多种基于激光雷达和相机融合的道路检测方法,包括SNE-RoadSeg、LidCamNet等,利用CNN和深度学习技术,结合深度图像和点云数据进行道路分割和检测。此外,还探讨了使用CRF进行融合的技术,如Road Detection through CRF based LiDAR-Camera Fusion。所有方法旨在提升自动驾驶中的道路识别准确性。
摘要由CSDN通过智能技术生成

本博客列举一些激光雷达-相机融合的方法,主要是针对Road Detection问题的。其实Road Detection是属于Semantic Segmentation问题的,只是需要划分的就是两类,一个是道路,一个是非道路。目前主流方法当然是CNN,需要大量的数据用来训练。另外还有就是使用CRF。

Network

SNE-RoadSeg

文章:SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentation for Accurate Freespace Detection
发表:ECCV, 2020

文章的具体解读可以看我另一篇博客。这里就简述一下其方法:
在这里插入图片描述
网络的输入是两种图,一种是RGB,另一种是Depth。文章中并没有直接用Depth,而是通过SNE的变换用Depth图提取了pixel-wise的法向量。然后用两个ResNet做Encoder,Decoder是用DenseNet的形式构建的。

虽然本文不是LiDAR和Camera的Fusion,但是Kitti不提供Depth Image,肯定是通过某种方法用LiDAR的数据恢复出来的,文章中没细说。


LidCamNet

文章:LIDAR–camera fusion for road detection using fully convolutional neural networks
发表:Robotics and Autonomous Systems, 2019

该文章提出的方法首先是将LiDAR获取的Point Cloud转为Depth Image,具体的方法可参考文章中的Section 4,思路仍然是对齐LiDAR和Camera的数据,然后把LiDAR投影上去,最后再插值/补齐空洞得到稠密的Depth Image。文章中给出了他们做的引文:Pedestrian detection combining rgb and dense lidar data, in: Intelligent Robots and Systems (IROS 2014)。得到的效果图如下:
在这里插入图片描述
然后来介绍一下网络,网络也非常简单:
在这里插入图片描述
Encoder和Decoder就是FCN,其中L6-L14是3x3的Dilated Convolution Layer。本文提出来Cross Fusion来融合两种数据:
在这里插入图片描述
也就是说,其实每个尺度的RGB和Depth的特征图都做了学习权重的pixel-wise addition。


Road segmentation with image-LiDAR data fusion in deep neural network

文章:Road segmentation with image-LiDAR data fusion in deep neural network
发表:Multimedia Tools and Applications,2019

本方法仍然是将LiDAR投影到Image上做的。具体网络如下:
在这里插入图片描述
使用ResNet-50做Encoder,得到1/4~1/32的feature map。然后再使用多个RFU来融合LiDAR数据和上采样。RFU具体见下图:
在这里插入图片描述
可以看到,RFU有两个作用:1)融合低分辨率的高分辨的图像,2)融合同分辨率的来自image和lidar的feature map。其中image feature maps是由Encoder输出的,LiDAR points projection则是通过投影进,然后缩放得到的。也就是说,其实是用LiDAR points投影得到了一个深度图,然后对深度图做了图像金字塔。

本文区别于其他方法在于࿰

随着自动驾驶技术的不断发展,多模态感知成为了实现自动驾驶的关键技术之一。激光雷达相机自动驾驶中最常用的两种传感器,它们分别具有高精度测距和高分辨率成像的特点。如何将激光雷达相机的信息融合起来,实现更加全面、准确的环境感知,成为了研究的热点。 面向自动驾驶多模态感知的激光雷达-相机融合框架主要包括以下几个步骤: 1. 数据预处理:对激光雷达相机采集到的数据进行预处理,包括去噪、校准、配准等操作,以确保数据的准确性和一致性。 2. 特征提取:对激光雷达相机数据进行特征提取,提取出各自的特征信息。激光雷达可以提取出点云数据,相机可以提取出图像特征点、颜色等信息。 3. 特征融合:将激光雷达相机提取出的特征融合起来,形成一个多模态感知的环境模型。常用的融合方法包括点云-图像投影融合、特征点匹配融合等。 4. 目标检测与跟踪:利用融合后的环境模型,进行目标检测与跟踪。可以利用深度学习等方法进行目标检测,利用卡尔曼滤波等方法进行目标跟踪。 5. 场景分割与建图:根据融合后的环境模型,对环境进行场景分割,将场景分成不同的区域,同时进行三维建图,建立起环境模型。 6. 路径规划与控制:基于环境模型和目标检测结果,进行路径规划与控制,实现自动驾驶。 总之,面向自动驾驶多模态感知的激光雷达-相机融合框架可以有效提高自动驾驶系统的环境感知能力,为实现自动驾驶提供更加可靠、安全的技术支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值