动手学深度学习v2-LeNet

1.输入为32*32的图片,放到一个5*5的卷积层中然后该卷积层的输出通道是6,高宽为28*28.该层输出可以被认为是feature map(特征图)

2.接下来是个2*2的pooling层,高宽被压缩到14*14,但输出通道依旧是6.

3.然后接下来的卷积层,卷积层的核依旧是5*5的,使得特征图变成了10*10的。这里输出通道数是16.

4.再接一个pooling层,输出通道数不变,特征图大小变为5*5.

5.再把数据拉成一个向量,输入到全连接层上,图上的Gauss现在已经不用了。可以认为后接二个全连接层得到10个输出,然后softmax得到一个概率。

总结:

LeNet是早期成功的神经网络,该模型通过卷积层来学习图片的空间信息,通过池化层来降低的图片的敏感度,然后通过全连接层来转换到类别空间,得到实类。可以被认为为两个卷积和池化,后接一个多层感知机得到一个从图片到类别的映射。

import torch
from torch import nn
from d2l import torch as d2l

class Reshape(torch.nn.Module):
  def forward(self, x):
    return x.view(-1, 1, 28, 28) # 把 x 变成 批量数不变,通道数为1,大小为28*28
    
net = torch.nn.Sequential(
    Reshape(), nn,Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(), # 卷积后得到一个4D的数据,通过Flatten拉平
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10)
)

# 检查模型------------------------------
X = torch.rand(Size=(1, 1, 28, 28), dtype=torch.float32)
for layer in net:
  X = layer(X)
  print(layer.__class__.__name__, 'output shape:\t', X.shape)
# --------------------------------------

核心思想:通过不断的卷积把空间信息不断压缩,压缩后的数据添加到通道里。通道是一直在增加的,feature map(特征图)的高宽是一直在减少的,最后的最后我们可以认为高宽变成1通道数大至上千,最后一般做全连接输出。

# LeNet 在 Fashion-MNIST 数据集上的表现
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)
# ----------------------------------------

# 对 evaluate_accuracy函数进行轻微的修改,使得可在GPU上运行
def evaluate_accuracy_gpu(net, data_iter, device=None):
  if isinstance(net, torch.nn.Module):
    net.eval() # eval 关闭模型中的dropout功能,调整到验证状态,梯度清零,不调整权重
    if not device:
      device = next(iter(net.parameters())).device
  metric = d2l.Accumulator(2)
  for X, y in data_iter:
    if isinstance(X, list):
      X = [x.to(device) for x in X]
    else:
      X = X.to(device)
    y = y.to(device)
    metric.add(d2l.accuracy(net(X), y), y.numel()) # numel 为计算y的元素个数
  return metric[0] / metric[1]

# 为了使用GPU,train部分也需要改动
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
  """Train a model with a GPU (defined in chapter 6)"""
  def init_weights(m):
    if type(m) == nn.Linear or type(m) == nn.Conv2d:
      nn.init.xavier_uniform_(m.weight) 
      # xavier这个函数根据输入输出的大小,使用随机数时保证输入和输出的方差是差不多的,保证模型一开始的稳定性
  net.apply(init_weigths)
  print('training on', device)
  net.to(device)  # 模型也得挪到GPU上
  optimizer = torch.optim.SGD(net.parameters(), lr=lr)
  loss = nn.CrossEntropyLoss()
  animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                legend=['train loss', 'train acc', 'test acc'])
  timer, num_batches = d2l.Timer(), len(train_iter)
  for epoch in range(num_epochs):
    metric = d2l.Accumulator(3)
    net.train()
    for i, (X, y) in enumerate(train_iter):
      timer.start()
      optimizer.zero_grad() # 操作梯度设置为 0
      X, y = X.to(device), y.to(device) # 输入输出挪到device上,可以是CPU,也可以是GPU
      y_hat = net(X)  
      l = loss(y_hat, y) # 前向操作,计算损失
      l.backward()     # 计算梯度
      optimizer.step()    # 迭代参数
      metric.add(l * X.shape[0], d2l.accuracy(y_hat, y)) # 后面是过程动画化,打印过程
      timer.stop()
      train_l = metric[0] / metric[2]
      train_acc = metric[1] / metric[2]
      if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
    test_acc = evaluate_accuracy_gpu(net, test_iter)
    animator.add(epoch + 1, (None, None, test_acc))
  print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
          f'test acc {test_acc:.3f}')
  print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')

# 训练和评估LeNet-5模型
lr, num_epochs = 0.9, 10
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

ReNet为什么能训练出1000层的模型:

1.避免梯度消失,乘法变加法

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值