opencv之SIFT特征检测介绍

SIFT特征检测介绍

SIFT(Scale-Invariant Feature Transform)特征检测关键特性

  • 建立尺度空间,寻找极值
    • 工作原理
      • 构建图像高斯金字塔,求取DoG,发现最大与最小值在每一级
      • 构建的高斯金字塔,每一层根据sigma值不同,可以分为几个等级,最少有四个
  • 关键点定位(寻找关键点准确位置与删除若边缘)
    • 我们在像素级别获得了极值点的位置,但是更准确的值应该在亚像素位置,如何得到精确位置的过程称为关键点(准确、精准)定位
    • 删除弱边缘-通过Hassian矩阵特征值实现,小于阈值自动舍弃
  • 关键点方向指定
    • 求得每一层对应图像的梯度,根据给定的窗口大小
    • 计算每个高斯权重,sigma=scale*1.5~360之间建立36个直方图Bins
    • 找最高峰对应的Bin,大于max*80%的都保留
    • 这样就实现了旋转不变性,提高了匹配时候的稳定性
    • 大约有15%的关键点会有多个方向
  • 关键点描述子
    • 拟合多项式差值寻找最大Peak
    • 得到描述子=448=128

函数API

SIFT对象创建函数api

static Ptr<SIFT> cv::xfeatures2d::SIFT::create 	( 	
        int  	nfeatures = 0,
		int  	nOctaveLayers = 3,
		double  	contrastThreshold = 0.04,
		double  	edgeThreshold = 10,
		double  	sigma = 1.6 
	) 	

参数介绍

  • nfeatures 特征值数量保留的最佳功能的数量。这些特征按其分数排名(在SIFT算法中作为局部对比度测量)
  • nOctaveLayers 高斯计算的层数
  • contrastThreshold 用于过滤掉半均匀(低对比度)区域中的弱特征的对比度阈值。 阈值越大,检测器产生的特征越少。论文给出的值是0.3,opencv默认0.4区别不大
  • edgeThreshold 用于过滤边缘特征的阈值。请注意,其含义与contrastThreshold不同,即edgeThreshold越大,滤除的特征越少(保留的特征越多)一般默认10。
  • sigma 高斯的sigma应用于每层#0的输入图像。如果使用图像较弱,则可能需要减少数量。默认1.6

SIFT提取关键点函数api

void cv::xfeatures2d::SIFT::detect(  InputArray image,     
              vector<KeyPoint>& keypoints,
              InputArray mask=noArray() 
);

函数参数介绍

  • image 待检测的图像
  • keypoints 检测到的关键点集合
  • mask 指定在哪里寻找关键点的掩码(必须是在感兴趣区域中具有非零值的8位整数矩阵)

SIFT绘制关键点函数api

cv::drawKeypoints(InputArray image, 
                   vector<KeyPoint>& keypoints, 
                   InputOutputArray outImage,
                   const Scalar& color=Scalar::all(-1), 
                   int flags=DrawMatchesFlags::DEFAULT 
);

函数参数介绍

  • image 进行绘制的图像
  • keypoints 来自源图像的关键点
  • outImage 绘制完成后输出图像
  • color 关键点的颜色 默认值随机值
  • DrawMatchesFlags 设置绘图功能的标志 默认圆圈

代码演示


#include <iostream>
#include <opencv2/opencv.hpp>
#include <math.h>
#include <opencv2/xfeatures2d.hpp>

using namespace std;
using namespace cv;
using namespace cv::xfeatures2d;

#define Pic_Path "C://pic//"
#define Pic_Name "3.jpg"

int main(void)
{
    Mat src, dst, gray_src;
	string pic = string(Pic_Path) + string(Pic_Name);
	cout << "打开图片路径:" << pic << endl;

	src = imread(pic);
	if (src.empty())
	{
		cout << "图片不存在或打开失败" << endl;
		return -1;
	}

	namedWindow("原始图片", WINDOW_AUTOSIZE);
	imshow("原始图片", src);

	//图片转换为灰度图像
	cvtColor(src, gray_src, COLOR_BGR2GRAY);

	//创建SURF对象
	double hessianThreshold = 100;  //检测阈值
	vector<KeyPoint> keypoints;     //关键点的集合
	Ptr<SIFT> sift = cv::xfeatures2d::SIFT::create(hessianThreshold);  //初始化SIFT对象
	sift->detect(gray_src, keypoints);    //检测关键点

	printf("keypoints num is %d\n", keypoints.size());
	dst = src.clone();   //拷贝原图 用于在原图上显示关键点
	drawKeypoints(dst, keypoints, dst);   //绘制关键点

	//显示检测结果
	namedWindow("SIFT检测图片", WINDOW_AUTOSIZE);
	imshow("SIFT检测图片", dst);
	waitKey(0);
	destroyAllWindows();
	return 0;
}

运行效果

在这里插入图片描述之前用SURF检测的效果
在这里插入图片描述

参考链接:https://blog.csdn.net/lingyunxianhe/article/details/79063547

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值