1. 什么是超定方程组
简单来说,不成线性关系的方程个数超过未知数个数的方程组即为超定方程组。
严格定义为:对于方程组Ra=y,R为n×m矩阵,如果R列满秩,且n>m。则方程组没有精确解,此时称方程组为超定方程组。
2.超定方程解法
2.1 最小二乘法求解
方程组有精确解,则称为是相容的,其充要条件是rank®=rank(R,y)。设rank®=r>0,则总存在分解R=FG,即满秩分解。
定理1
方程组必存在最小二乘解,且a是方程组的最小二乘解的充要条件是a是RT·R·a=RT·y的解。
定理2
若rank®=r<m,则方程组有无穷多个最小二乘解,其中2-范数最小的解称为方程组的极小最小二乘解,且该解是唯一的,为a’=GT(GGT)-1(FTF)-1FTy
定理3
若rank®=m<=n,以上超定方程组存在唯一最小二乘解,解为: