Intorduction to Linear Algebra(3) Determinants

introduction to determinants

d e t A = ∑ j = 1 n ( − 1 ) i + j a 1 j A n j det A=\sum^n_{j=1}(-1)^{i+j}a_{1j}A_{nj} detA=j=1n(1)i+ja1jAnj
d e t A = ∑ i = 1 n ( − 1 ) i + j a i 1 A i n det A=\sum^n_{i=1}(-1)^{i+j}a_{i1}A_{in} detA=i=1n(1)i+jai1Ain
if A A A is a triangular matrix the determinants is products of the entries on the main diagonal of A A A

Properties of determinants

Row Operations:
Let A A A be a square matrix.
a.If a multiple of one row of A A A is added to another row to produce a matrix B B B, then d e t B = d e t A det B=detA detB=detA.
b.If two rows of A A A are interchanged to produce B B B, then d e t B = − d e t A detB=-detA detB=detA.
c.If one row of A A A is multipled by k k k to produce B B B, then d e t B = k ∗ d e t A detB=k*detA detB=kdetA.
Theorem:
If A A A is an n × n n\times n n×n matrix, then d e t A T = d e t A detA^T=detA detAT=detA
If A A A and B B B are n × n n \times n n×n matrix, then d e t ( A B ) = d e t A × d e t B det(AB)=detA \times detB det(AB)=detA×detB
Linearity Properties of the determinant Function
A ( x ) = [ a 1 ⋯ a i − 1 x a i + 1 ⋯ a n ] A(x)=[a_1 \cdots a_{i-1} \quad x \quad a_{i+1} \cdots a_{n}] A(x)=[a1ai1xai+1an]
T ( x ) = d e t [ a 1 ⋯ a i − 1 x a i + 1 ⋯ a n ] T(x)=det[a_1 \cdots a_{i-1} \quad x \quad a_{i+1} \cdots a_{n}] T(x)=det[a1ai1xai+1an]
T ( c x ) = c T ( x ) T(cx)=cT(x) T(cx)=cT(x)
T ( a + b ) = T ( a ) + T ( b ) T(a+b)=T(a)+T(b) T(a+b)=T(a)+T(b)
Cramer’s Rule:
Let A be an ivertible n × n n\times n n×n matrix. For any b b b in R n \mathbb R^n Rn, the unique solution of A x = b Ax=b Ax=b is:
x = d e t A i ( b ) d e t A x=\frac{detA_i(b)}{detA} x=detAdetAi(b)
Thus, from A A − 1 = E AA^{-1}=E AA1=E we could get A − 1 = [ d e t A 1 ( e 1 ) d e t A ⋯ d e t A 1 e n d e t A ⋮ ⋮ ⋮ d e t A n e 1 d e t A ⋯ d e t A n e n d e t A ] A^{-1}=\begin{bmatrix}\frac{detA_1(e_1)}{detA} & \cdots & \frac{detA_1{e_n}}{detA}\\ \vdots &\vdots & \vdots \\ \frac{detA_n{e_1}}{detA}&\cdots& \frac{detA_n{e_n}}{detA} \end{bmatrix} A1=detAdetA1(e1)detAdetAne1detAdetA1endetAdetAnen
A − 1 = 1 d e t A a d j A A^{-1}=\frac{1}{detA}adjA A1=detA1adjA

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值