Introduction to Linear Algebra(4) Vector Spaces

rules of vector space

for each u , v u,v u,v in vector space V V V. u + v u+v u+v, c u cu cu, c v cv cv are in V V V

The Null Space of a Matrix

the set of x x x that satisfy A x = 0 Ax=0 Ax=0 is the null space of the matrix A A A.

The column Space of a Matrix

The column space of m × n m \times n m×n matrix A A A written as C o l A Col A ColA is a set of all linear combinations of the columns of A A A if A = [ a 1 ⋯ a n ] A=[a_1 \cdots a_n] A=[a1an], thus
C o l A = s p a n { a 1 ⋯ a n } ColA=span\{a_1 \cdots a_n\} ColA=span{a1an}
Noted:
column space of an m × n m \times n m×n matrix A A A is all of R m R^m Rm if and only if the equation A x = b Ax=b Ax=b has a solution for each b in R m R^m Rm.

Kernel and Range of a Linear Transformation

For a linear transformation T T T: V → W V\rightarrow W VW, the kernel of T T T is a set of vectors x x x: for each u u u T ( u ) = 0 T(u)=0 T(u)=0, the range of T T T is the set of all vectors in W W W of form T ( x ) T(x) T(x) for some x x x in V V V.
If this transformation is matrix transformation, then kernel of A A A is N u l A Nul A NulA, range of A A A is C o l A Col A ColA
β = { b 1 , b 2 , ⋯ b n } \beta=\{b_1,b_2,\cdots b_n\} β={b1,b2,bn} is the bais of H H H if: β \beta β is a linear independent set and H = s p a n { b 1 , b 2 , ⋯   , b n } H=span \{b_1,b_2,\cdots , b_n\} H=span{b1,b2,,bn}

Coordinate Systems

Suppose β = { b 1 , b 2 , ⋯ b n } \beta=\{b_1,b_2,\cdots b_n\} β={b1,b2,bn} is the basis for V V V and x x x is in V V V. The coordinates of x x x relative to the basis β \beta β are weights c 1 , ⋯   , c n c_1,\cdots,c_n c1,,cn such that x = c 1 b 1 , ⋯   , c n b n x=c_1b_1,\cdots,c_nb_n x=c1b1,,cnbn

The Coordinate Mapping

Let β = { b 1 , b 2 , ⋯ b n } \beta=\{b_1,b_2,\cdots b_n\} β={b1,b2,bn} be the basis of a vector space V V V. Then the coordinating mapping x → x β x\rightarrow x_{\beta} xxβ is a one-to-one linear transformation from V V V onto R n R^n Rn

dimension of N u l A Nul A NulA and C o l A Col A ColA

Pivotal columns of a matrix A A A form a basis for C o l A ColA ColA, thus the demension of C o l A Col A ColA is the number of pivotal columns in A A A.
The dimension of N u l A Nul A NulA is the free variables in equation A x = 0 Ax=0 Ax=0

row space

If two matrices A A A and B B B are row equivalent, then their row spaces are the same. If B B B is in echelon form, the nonzero rows of B B B form a basis for the row space of A A A as well as for that of B B B.

The rank theorem

the rank of A A A is the dimension of the column space of A A A.
Dimension of C o l A ColA ColA and R o w A RowA RowA for m × n m\times n m×n matrix A A A are equal. R a n k A + d i m N u l A = n Rank A+dimNulA=n RankA+dimNulA=n

Rank and the Invertible Matrix Theorem

Let A be an n × n n \times n n×n matrix. Then the following statements are each equivalent to the statement that A A A is an invertible matrix.
m. The columns of A A A form a basis of R n R^n Rn
n. C o l A = R n Col A=R^n ColA=Rn
o. d i m C o l A = n dimColA=n dimColA=n
p. r a n k A = n rankA=n rankA=n
q. N u l A = { 0 } NulA=\{0\} NulA={0}
r. d i m N u l A = 0 dimNulA=0 dimNulA=0

in practical, the effective rank of a matrix A A A is often determined from a singular value decomposition of A A A.
Let β = { b 1 , b 2 , ⋯   , b n } \beta=\{b_1,b_2,\cdots,b_n\} β={b1,b2,,bn} and c = { c 1 , ⋯   , c n } c=\{c_1,\cdots,c_n\} c={c1,,cn} be the bases of a vector space V V V. Then there is a unique n × n n \times n n×n matrix P C ← B \mathop{P}\limits_{C\leftarrow B} CBP such that [ x ] c = P C ← B [ x ] b [x]_c=\mathop{P}\limits_{C\leftarrow B}[x]_b [x]c=CBP[x]b
The columns of P C ← B \mathop{P}\limits_{C\leftarrow B} CBP are C − C- C coordinate vecctors of the vectors in the basis β \beta β. That is, P C ← B = [ [ b 1 ] c [ b 2 ] c ⋯ [ b n ] c ] \mathop{P}\limits_{C\leftarrow B}=[ [b_1]_c[b_2]_c \cdots[b_n]_c] CBP=[[b1]c[b2]c[bn]c]

Applications to Linear Difference Equations

If a n ≠ 0 a_n \ne 0 an̸=0 and if { z k } \{z_k\} {zk} is given, the equation for all k k k: y k + n + a 0 y k + n − 1 + a 1 y k + n − 2 + ⋯ + a n y k = z k y_{k+n}+a_0y_{k+n-1}+a_1y_{k+n-2}+\cdots+a_ny_k=z_k yk+n+a0yk+n1+a1yk+n2++anyk=zk
has a uniques solution whenever the y 0 , ⋯   , y n − 1 y_0,\cdots,y_{n-1} y0,,yn1 are specified.

The set of H H H of all solutions of the n n nth-order homogeneous linear difference equation y k + n + a 0 y k + n − 1 + a 1 y k + n − 2 + ⋯ + a n y k = z k y_{k+n}+a_0y_{k+n-1}+a_1y_{k+n-2}+\cdots+a_ny_k=z_k yk+n+a0yk+n1+a1yk+n2++anyk=zk is an n-demensional vector space

Application to Markove Chains

A vector with nonnegative entries that add up to 1 is called a probability vector. A stochastic matrix is a square matrix whose columns are probability vectors. A markove chain is a sequence of probability vectors x 0 , x 1 , x 2 , ⋯ x_0,x_1,x_2,\cdots x0,x1,x2,, together with a stochastic matrix P P P, such that:
x 1 = P x 0 , x 2 = P x 1 , ⋯ x n = P x n − 1 x_1=Px_0,x_2=Px_1,\cdots x_n=Px_{n-1} x1=Px0,x2=Px1,xn=Pxn1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值