线性变换(1)——不变子空间

定义:W是V^{F} 的子空间,\sigma \in L\left ( V^{F} \right )  ,若 \forall \alpha \in W ,有 \sigma \left ( \alpha \right )\in W ,则称W为\sigma的不变子空间,或称为\sigma -子空间。

举例:Im\sigma 和 ker\sigma 

例  \sigma \in \mathbb{R}^{3}  ,\sigma\left ( x_{1},x_{2},x_{3} \right )= \left ( x_{3},x_{2},x_{1} \right )

W=\left \{ (x_{1},x_{2},0) \mid x_{1},x_{2}\in \mathbb{R} \right \}

\alpha =(x_{1},x_{2},0)    \sigma(\alpha)=(0,x_{2},x_{1})\notin W

性质:

  1. Im\sigma 和 ker\sigma 一定是 \sigma -子空间
  2. 进一步地,\tau \sigma \in L(V)  ,\tau \sigma =\sigma \tau ,则  Im\sigma 和 ker\sigma 一定是 \tau -子空间
  3. V_{1},V_{2} 均为  \sigma -子空间 ,则 V_{1}\cap V_{2}V_{1} +V_{2} 是  \sigma -子空间
  4. W是 \sigma -子空间 ,\sigma 可逆,则W是 \sigma^{-1}-子空间

证明:

1、2)令 \alpha \in Im\sigma\exists \beta \in V\, \, s.t.\, \, \alpha = \sigma(\beta)

            \tau (\alpha)=\tau(\sigma(\beta))=\sigma(\tau(\beta))\in Im\sigma

           令 \alpha \in ker\sigma\sigma(\alpha)=0

           \sigma(\tau(\alpha))=\tau(\sigma(\alpha))=\tau(0)=0\Rightarrow \tau(\alpha)\in ker\sigma


3)\forall \alpha \in V_{1}\cap V_{2}\sigma(\alpha)\in V_{1}\cap V_{2}

      \alpha \in V_{1}+V_{2}\alpha =\alpha_{1}+\alpha_{2} \: \:\alpha_{i}\in V_{i},i=1,2

      \sigma(\alpha)=\sigma(\alpha_{1})+\sigma(\alpha_{2})\in V_{1}+V_{2}


4)令 \sigma \in L\left ( V^{F} \right ) 为W的一个基,则 W=L(\alpha_{1},...,\alpha_{r}) 

 

      又 \sigma可逆,故 \sigma(\alpha_{1}),...,\sigma(\alpha_{r}) 线性无关,故是W的一个基

      W=L(\sigma(\alpha_{1}),...,\sigma(\alpha_{r}))

      于是 \forall \alpha \in W\alpha =k_{1}\sigma(\alpha_{1})+...+k_{r}\sigma(\alpha_{r})

                                      =\sigma(k_1\alpha_{1}+...+k_r\alpha_r)

      \sigma^{-1}=k_{1}\alpha_{1}+...+k_{r}\alpha_{r} \in W

不变子空间与矩阵的化简

      设W是V的子空间,\sigma \in L\left ( V^{F} \right )\alpha_{1},...,\alpha_{r}(1) 是W的一个基,

则(1)可扩充为V的一个基,\alpha_{1},...,\alpha_{r},\alpha_{r+1},...,\alpha_{n}(2)

下考察\sigma在(2)下矩阵的形状

 首先,W 是 \sigma -子空间,则 \sigma(\alpha_{i})\in W ,其中 i=1,2,...,r ,于是

\sigma(\alpha_1)=a_{11}\alpha_1+a_{21}\alpha_2+...+a_{r1}\alpha_{r}

...

\sigma(\alpha_r)=a_{1r}\alpha_1+a_{2r}\alpha_2+...+a_{rr}\alpha_{r}

\sigma(\alpha_r+1)=a_{1,r+1}\alpha_1+a_{2,r+1}\alpha_2+...+a_{r,r+1}\alpha_{r}+...+a_{n,r+1}\alpha_{n}

...

\sigma(\alpha_n)=a_{1,n}\alpha_1+a_{2,n}\alpha_2+...+a_{r,n}\alpha_{r}+...+a_{n,n}\alpha_{n}

 于是 \sigma在(2)下矩阵为

A=\begin{pmatrix} a_{11} & ... & a_{1r} & a_{1,r+1} & ... & a_{1n}\\ ... & & & & &... \\ a_{1r} & ... & a_{rr} & a_{r,r+1} & ... & a_{r,n}\\ 0 & ... & 0 & a_{r+1,r+1} & ... & a_{r+1,n}\\ ... & & & & &... \\ 0 & ... & 0 & a_{n,r+1} & ... &a_{n,n} \end{pmatrix}=\begin{pmatrix} A_{1} & A_{2}\\ 0 & A_{3} \end{pmatrix}

特例:若 V=V_{1}\oplus V_{2}

V_{i}  是 \sigma -子空间

\Leftrightarrow A=\begin{pmatrix} A_1 & 0\\ 0 & A_{2} \end{pmatrix}

由此引出下一篇特征值与特征向量

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zedkyx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值