高等代数 线性映射(第9章)3 不变子空间与最小多项式

一.不变子空间与 H a m i l t o n − C a y l e y Hamilton-Cayley HamiltonCayley定理(9.5)
在这里插入图片描述
1.不变子空间
(1)概念:
在这里插入图片描述
(2)性质与判定:

命题1: V V V上线性变换 Ꭿ Ꭿ 的核与象, Ꭿ Ꭿ 的特征子空间都是 Ꭿ − Ꭿ- 子空间
在这里插入图片描述

命题2:设 Ꭿ , B Ꭿ,ℬ ,B都是 V V V上的线性变换,如果 Ꭿ , B Ꭿ,ℬ ,B可交换,那么 K e r   B , I m   B , B Ker\,ℬ,Im\,ℬ,ℬ KerB,ImB,B的特征子空间都是 Ꭿ − Ꭿ- 子空间
在这里插入图片描述
推论1:设 Ꭿ Ꭿ 是域 F F F上线性空间 V V V上的线性变换, f ( x ) ∈ F [ x ] f(x)∈F[x] f(x)F[x],则 K e r   f ( Ꭿ ) , I m   f ( Ꭿ ) , f ( Ꭿ ) Ker\,f(Ꭿ),Im\,f(Ꭿ),f(Ꭿ) Kerf(),Imf(),f()的特征子空间都是 Ꭿ − Ꭿ- 子空间
在这里插入图片描述

命题3: V V V上线性变换 Ꭿ Ꭿ 的不变子空间的和与交仍是 Ꭿ Ꭿ 的不变子空间
在这里插入图片描述

命题4:设 Ꭿ Ꭿ 是域 F F F上线性空间 V V V上的1个线性变换, W = < α 1 , α 2 . . . α s > W=<α_1,α_2...α_s> W=<α1,α2...αs> V V V的1个子空间,则 W W W Ꭿ − Ꭿ- 子空间当且仅当 Ꭿ α i ∈ W   ( i = 1 , 2... s ) Ꭿα_i∈W\,(i=1,2...s) αiW(i=1,2...s)
在这里插入图片描述

命题5:设 Ꭿ Ꭿ 是域 F F F上线性空间 V V V上的1个线性变换, ξ ∈ V \xi∈V ξV ξ ≠ 0 \xi≠0 ξ=0,则 < ξ > <\xi> <ξ> Ꭿ − Ꭿ- 子空间当且仅当 ξ \xi ξ Ꭿ Ꭿ 的1个特征向量
在这里插入图片描述

(3)将线性变换限制到不变子空间或其商空间上:
在这里插入图片描述
在这里插入图片描述
2.用不变子空间研究线性变换的矩阵表示
在这里插入图片描述
(1)将线性变换表示成分块上三角矩阵:

定理1:设 A \mathcal{A} A是域 F F F n n n维线性空间 V V V上的1个线性变换, W W W A \mathcal{A} A的1个非平凡的不变子空间 W W W中取1个基 α 1 . . . α r α_1...α_r α1...αr,把它扩充成 V V V的1个基 α 1 . . . α r , α r + 1 . . . α n α_1...α_r,α_{r+1}...α_n α1...αr,αr+1...αn,则 A \mathcal{A} A在此基下的矩阵 A A A为1个分块上三角矩阵 A = [ A 1 A 3 0 A 2 ] A=\left[\begin{matrix}A_1&A_3\\0&A_2\end{matrix}\right] A=[A10A3A2]其中 A 1 A_1 A1 A   ∣   W \mathcal{A}\,|\,W AW W W W的1个基 α 1 . . . α r α_1...α_r α1...αr下的矩阵, A 2 A_2 A2 A \mathcal{A} A诱导的商空间 V / W V/W V/W上的线性变换 A ~ \tilde{\mathcal{A}} A~ V / W V/W V/W的1个基 α r + 1 + W . . . α n + W α_{r+1}+W...α_n+W αr+1+W...αn+W下的矩阵;设 A , A   ∣   W , A ~ \mathcal{A},\mathcal{A}\,|\,W,\tilde{\mathcal{A}} A,AW,A~的特征多项式分别为 f ( λ ) , f 1 ( λ ) , f 2 ( λ ) f(λ),f_1(λ),f_2(λ) f(λ),f1(λ),f2(λ),则 f ( λ ) = f 1 ( λ ) f 2 ( λ ) f(λ)=f_1(λ)f_2(λ) f(λ)=f1(λ)f2(λ)
在这里插入图片描述
在这里插入图片描述

定理2:设 A \mathcal{A} A是域 F F F n n n维线性空间 V V V上的1个线性变换,如果 A \mathcal{A} A V V V的1个基 α 1 . . . α r , α r + 1 . . . α n α_1...α_r,α_{r+1}...α_n α1...αr,αr+1...αn下的矩阵 A A A为分块上三角矩阵 A = [ A 1 A 3 0 A 2 ] A=\left[\begin{matrix}A_1&A_3\\0&A_2\end{matrix}\right] A=[A10A3A2] W = < α 1 . . . α r > W=<α_1...α_r> W=<α1...αr>,那么 W W W A \mathcal{A} A的1个非平凡不变子空间,且 A   ∣   W \mathcal{A}\,|\,W AW W W W的1个基 α 1 . . . α r α_1...α_r α1...αr下的矩阵是 A 1 A_1 A1
在这里插入图片描述

(2)将线性变换表示成分块对角矩阵:

定理3:设 A \mathcal{A} A是域 F F F n n n维线性空间 V V V上的1个线性变换,则 A \mathcal{A} A V V V的1个基下的矩阵为分块对角矩阵(3)当且仅当 V V V能分解成 A \mathcal{A} A的非平凡不变子空间的直和: V = W 1 ⊕ W 2 ⊕ . . . ⊕ W s V=W_1\oplus W_2\oplus...\oplus W_s V=W1W2...Ws,并且 A i A_i Ai A   ∣   W i \mathcal{A}\,|\,W_i AWi W i W_i Wi的1个基下的矩阵
在这里插入图片描述
在这里插入图片描述

(3)寻找线性变换的非平凡不变子空间:
在这里插入图片描述

引理:设 V V V是域 F F F上的线性空间(可以是有限维的,也可以是无限维的), A \mathcal{A} A V V V上的1个线性变换,在 F [ x ] F[x] F[x]中, f ( x ) = f 1 ( x ) f 2 ( x ) f(x)=f_1(x)f_2(x) f(x)=f1(x)f2(x),且 ( f 1 ( x ) , f 2 ( x ) ) = 1 (f_1(x),f_2(x))=1 (f1(x),f2(x))=1,则 K e r   f ( A ) = K e r   f 1 ( A ) ⊕ K e r   f 2 ( A ) ( 5 ) Ker\,f(\mathcal{A})=Ker\,f_1(\mathcal{A})\oplus Ker\,f_2(\mathcal{A})\qquad(5) Kerf(A)=Kerf1(A)Kerf2(A)(5)
在这里插入图片描述

定理4:设 V V V是域 F F F上的线性空间(可以是有限维的,也可以是无限维的), A \mathcal{A} A V V V上的1个线性变换,在 F [ x ] F[x] F[x]中: f ( x ) = f 1 ( x ) f 2 ( x ) . . . f s ( x ) ( 9 ) f(x)=f_1(x)f_2(x)...f_s(x)\qquad(9) f(x)=f1(x)f2(x)...fs(x)(9)其中 f 1 ( x ) , f 2 ( x ) . . . f s ( x ) f_1(x),f_2(x)...f_s(x) f1(x),f2(x)...fs(x)两两互素,则 K e r   f ( A ) = K e r   f 1 ( A ) ⊕ K e r   f 2 ( A ) ⊕ . . . ⊕ K e r   f s ( A ) ( 10 ) Ker\,f(\mathcal{A})=Ker\,f_1(\mathcal{A})\oplus Ker\,f_2(\mathcal{A})\oplus...\oplus Ker\,f_s(\mathcal{A})\qquad(10) Kerf(A)=Kerf1(A)Kerf2(A)...Kerfs(A)(10)
在这里插入图片描述
在这里插入图片描述

3.零化多项式:

4.哈密顿-凯莱定理(Hamilton-Cayley Theorem)
在这里插入图片描述
(1)整环上的矩阵:
在这里插入图片描述
(2) H a m i l t o n − C a y l e y Hamilton-Cayley HamiltonCayley定理:

定理5:设 A A A是域 F F F上的 n n n级矩阵,则 A A A的特征多项式 f ( λ ) f(λ) f(λ) A A A的1个零化多项式,从而域 F F F n n n维线性空间 V V V上的线性变换 A \mathcal{A} A的特征多项式 f ( λ ) f(λ) f(λ) A \mathcal{A} A的1个零化多项式
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(3)利用 H a m i l t o n − C a y l e y Hamilton-Cayley HamiltonCayley定理分解线性变换:
在这里插入图片描述
二.最小多项式(9.6)
在这里插入图片描述
1.定义与性质
(1)线性变换的最小多项式:
在这里插入图片描述

F F F上线性空间 V V V上的线性变换 A \mathcal{A} A的最小多项式通常记为 m ( λ ) m(λ) m(λ)

(2)线性变换的最小多项式的性质:

命题6:线性空间 V V V上的线性变换 A \mathcal{A} A的最小多项式是唯一的
在这里插入图片描述

命题7:设 A \mathcal{A} A是域 F F F上线性空间 V V V上的线性变换, F [ λ ] F[λ] F[λ]中的多项式 g ( λ ) g(λ) g(λ) A \mathcal{A} A的零化多项式当且仅当 g ( λ ) g(λ) g(λ) A \mathcal{A} A的最小多项式 m ( λ ) m(λ) m(λ)的倍式
在这里插入图片描述

命题8:设 A \mathcal{A} A是域 F F F上线性空间 V V V上的线性变换,则 A \mathcal{A} A的最小多项式 m ( λ ) m(λ) m(λ) A \mathcal{A} A的特征多项式 f ( λ ) f(λ) f(λ) F F F中有相同的根(但重数可以不同)
在这里插入图片描述
推论1:设 A \mathcal{A} A是域 F F F n n n维线性空间 V V V上的线性变换,域 E ⊇ F E\supe F EF,则 A \mathcal{A} A的最小多项式 m ( λ ) m(λ) m(λ) A \mathcal{A} A的特征多项式 f ( λ ) f(λ) f(λ) E E E中有相同的根(但重数可以不同)
在这里插入图片描述

(3)矩阵的最小多项式:
在这里插入图片描述

命题8’:域 F F F n n n级矩阵 A A A的最小多项式 m ( λ ) m(λ) m(λ) A A A的特征多项式 f ( λ ) f(λ) f(λ) F F F中有相同的根(但重数可以不同)
在这里插入图片描述
推论1:相似的矩阵有相同的最小多项式
在这里插入图片描述
推论2:设 A A A是域 F F F上的 n n n级矩阵,域 E ⊇ F E\supe F EF,则 A A A的最小多项式 m ( λ ) m(λ) m(λ) A A A的特征多项式 f ( λ ) f(λ) f(λ) E E E中有相同的根(但重数可以不同)
在这里插入图片描述

(4)矩阵的最小多项式不随域的扩大而改变:
在这里插入图片描述

命题9:设 A A A是域 F F F上的矩阵,域 E ⊇ F E\supe F EF,则如果 m ( λ ) m(λ) m(λ) A A A的最小多项式,那么把 A A A看成域 E E E上的矩阵,其最小多项式仍是 m ( λ ) m(λ) m(λ)
在这里插入图片描述

2.几类特殊线性变换或矩阵的最小多项式
(1)几类特殊的最小多项式:
在这里插入图片描述
在这里插入图片描述
(2)约当块(Jordan Block):

命题10:设 A \mathcal{A} A是域 F F F l l l维线性空间 W W W上的线性变换,如果 A = k I + B \mathcal{A}=k\mathcal{I}+\mathcal{B} A=kI+B,其中 B \mathcal{B} B是幂零指数为 l l l的幂零变换,那么 W W W中存在1个基使得 A \mathcal{A} A在此基下的矩阵 A A A A = [ k 1 0 . . . 0 0 0 0 k 1 . . . 0 0 0 0 0 k . . . 0 0 0 . . . . . . . . . . . . . . . . . . . . . 0 0 0 . . . k 1 0 0 0 0 . . . 0 k 1 0 0 0 . . . 0 0 k ] ( 5 ) A=\left[\begin{matrix}k&1&0&...&0&0&0\\0&k&1&...&0&0&0\\0&0&k&...&0&0&0\\...&...&...&...&...&...&...\\0&0&0&...&k&1&0\\0&0&0&...&0&k&1\\0&0&0&...&0&0&k\end{matrix}\right]\qquad(5) A=k00...0001k0...00001k...000.....................000...k00000...1k0000...01k(5)把(5)式中的矩阵称为1个 l l l约当块,记作 J l ( k ) J_l(k) Jl(k),其中 k k k是主对角线上的元素;于是 J l ( k ) J_l(k) Jl(k)的最小多项式是 ( λ − k ) l (λ-k)^l (λk)l
在这里插入图片描述
在这里插入图片描述
推论1:域 F F F上的 l l l级矩阵 A A A相似于 J l ( k ) J_l(k) Jl(k)当且仅当 A A A的最小多项式为 ( λ − k ) l (λ-k)^l (λk)l
在这里插入图片描述

(3)线性变换在线性空间与不变子空间上的最小多项式间的关系:

定理6:设 A \mathcal{A} A是域 F F F上线性空间 V V V上的线性变换,如果 V V V能分解成 A \mathcal{A} A的一些非平凡不变子空间的直和: V = W 1 ⊕ W 2 ⊕ . . . ⊕ W s ( 6 ) V=W_1\oplus W_2\oplus...\oplus W_s\qquad(6) V=W1W2...Ws(6)那么 A \mathcal{A} A的最小多项式 m ( λ ) m(λ) m(λ) m ( λ ) = [ m 1 ( λ ) , m 2 ( λ ) . . . m s ( λ ) ] ( 7 ) m(λ)=[m_1(λ),m_2(λ)...m_s(λ)]\qquad(7) m(λ)=[m1(λ),m2(λ)...ms(λ)](7)其中 m i ( λ )   ( i = 1 , 2... s ) m_i(λ)\,(i=1,2...s) mi(λ)(i=1,2...s) W j   ( j = 1 , 2... s ) W_j\,(j=1,2...s) Wj(j=1,2...s)上的线性变换 A   ∣   W j \mathcal{A}\,|\,W_j AWj的最小多项式; [ m 1 ( λ ) , m 2 ( λ ) . . . m s ( λ ) ] [m_1(λ),m_2(λ)...m_s(λ)] [m1(λ),m2(λ)...ms(λ)] m 1 ( λ ) , m 2 ( λ ) . . . m s ( λ ) m_1(λ),m_2(λ)...m_s(λ) m1(λ),m2(λ)...ms(λ)的最小公倍式
在这里插入图片描述
推论1:设 A A A是域 F F F上的1个 n n n级分块对角矩阵,即 A = d i a g { A 1 , A 2 . . . A s } A=diag\{A_1,A_2...A_s\} A=diag{A1,A2...As},设 A j A_j Aj的最小多项式是 m j ( λ )   ( j = 1 , 2... s ) m_j(λ)\,(j=1,2...s) mj(λ)(j=1,2...s),则 A A A的最小多项式 m ( λ ) m(λ) m(λ) m ( λ ) = [ m 1 ( λ ) , m 2 ( λ ) . . . m s ( λ ) ] m(λ)=[m_1(λ),m_2(λ)...m_s(λ)] m(λ)=[m1(λ),m2(λ)...ms(λ)]
在这里插入图片描述
在这里插入图片描述

(4)约当形矩阵(Jordan Matrix):
在这里插入图片描述
3.用最小多项式研究线性变换的矩阵表示
(1)线性变换可对角化的条件:

定理7:设 A \mathcal{A} A是域 F F F n n n维线性空间 V V V上的线性变换,则 A \mathcal{A} A可对角化当且仅当 A \mathcal{A} A的最小多项式 m ( λ ) m(λ) m(λ) F [ λ ] F[λ] F[λ]中能分解成不同的1次因式的乘积
在这里插入图片描述
推论1:域 F F F上的 n n n级矩阵 A A A可对角化当且仅当 A A A的最小多项式 m ( λ ) m(λ) m(λ) F [ λ ] F[λ] F[λ]中能分解成不同的1次因式的乘积
在这里插入图片描述
定理7及其推论使许多特殊类型的线性变换和矩阵是否可对角化的判定变得非常简洁

(2)最小多项式与可对角化的线性变换:

命题11:设 V V V是域 F F F上的线性空间,则
V V V上的幂等变换 A \mathcal{A} A一定可对角化
V V V上的幂零指数 l > 1 l>1 l>1的幂零变换 A \mathcal{A} A一定不可对角化
③当域 F F F的特征不等于2时, V V V上的对合变换 A \mathcal{A} A一定可对角化;当域 F F F的特征等于2时,不等于 I \mathcal{I} I的对合变换 A \mathcal{A} A一定不可对角化
④当 F F F是复数域时, V V V上的周期变换一定可对角化
在这里插入图片描述

命题12:域 F F F是级数 r > 1 r>1 r>1的约当块 J r ( a ) J_r(a) Jr(a)一定不可对角化;包含级数大于1的约当块的约当形矩阵一定不可对角化
在这里插入图片描述
推论1:设 A \mathcal{A} A是域 F F F n n n维线性空间 V V V上的线性变换,如果 A \mathcal{A} A可对角化,那么对于 A \mathcal{A} A的任意1个非平凡不变子空间 W W W都有 A   ∣   W \mathcal{A}\,|\,W AW可对角化
在这里插入图片描述

(3)最小多项式与不可对角化的线性变换:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
\quad\\\quad
附录.利用命题12的推论1确定可对角化的线性变换的不变子空间的结构

命题13:设 A \mathcal{A} A是域 F F F n n n维线性空间 V V V上的线性变换,如果 A \mathcal{A} A可对角化,且 λ 1 , λ 2 . . . λ s λ_1,λ_2...λ_s λ1,λ2...λs A \mathcal{A} A的所有不同的特征值,那么 A \mathcal{A} A的任一非平凡不变子空间 W W W W = ( V λ j 1 ∩ W ) ⊕ ( V λ j 2 ∩ W ) ⊕ . . . ⊕ ( V λ j r ∩ W ) W=(V_{λ_{j_1}}∩W)\oplus(V_{λ_{j_2}}∩W)\oplus...\oplus(V_{λ_{j_r}}∩W) W=(Vλj1W)(Vλj2W)...(VλjrW)其中 λ j 1 , λ j 2 . . . λ j r λ_{j_1},λ_{j_2}...λ_{j_r} λj1,λj2...λjr A \mathcal{A} A r r r个不同的特征值,并且对于 V λ j i   ( i = 1 , 2... s ) V_{λ_{j_i}}\,(i=1,2...s) Vλji(i=1,2...s),存在 A \mathcal{A} A的不变子空间 U j r U_{j_r} Ujr,使得 V λ j i = ( V λ j i ∩ W ) ⊕ U λ j i V_{λ_{j_i}}=(V_{λ_{j_i}}∩W)\oplus U_{λ_{j_i}} Vλji=(VλjiW)Uλji
在这里插入图片描述

在这里插入图片描述
命题14:设 A \mathcal{A} A是域 F F F n n n维线性空间 V V V上的线性变换,则 A \mathcal{A} A可对角化当且仅当 A \mathcal{A} A的特征多项式在包含 F F F的代数封闭域中的全部 n n n个根(重根按重数计算)都在 F F F中,且对于 A \mathcal{A} A的任一不变子空间 W W W,都存在 A \mathcal{A} A的不变子空间作为 W W W V V V中的补空间
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值