1、清华计图Jittor
清华大学开发了一个名为计图(Jittor)的深度学习框架。
计图(Jittor:Just in Time)是一个采用元算子表达神经网络计算单元、完全基于动态编译(Just-in-Time)的深度学习框架,其主要特性为元算子和统一计算图。
在编程语言上,Jittor 采用了灵活而易用的 Python。用户可以使用它,编写元算子计算的 Python 代码,然后 Jittor将其动态编译为 C++,实现高性能。
-
Jittor 官网:https://cg.cs.tsinghua.edu.cn/jittor/
-
github地址:https://github.com/Jittor/jittor
2、腾讯优图NCNN
2017年,腾讯优图实验室公布了成立以来的第一个开源项目ncnn,这是一个为手机端极致优化的高性能神经网络前向计算框架,无第三方依赖,跨平台,手机端 cpu的速度快于目前所有已知的开源框架。
-
github地址:https://github.com/Tencent/ncnn
-
ncnn与同类框架对比
3、百度PaddlePaddle
PaddlePaddle 作为国内首个深度学习开源平台,是2016 年 8 月底百度开源的深度学习平台。
PaddlePaddle 的设计思想是基于Layer的设计。
- github地址:https://github.com/PaddlePaddle
4、阿里X-DeepLearning
X-DeepLearning的计划是业界首个面向广告、推荐、搜索等高维稀疏数据场景的深度学习开源框架,可以与TensorFlow、PyTorch 和 MXNet 等现有框架形成互补。
X-Deep Learning(下文简称XDL)由阿里巴巴旗下大数据营销平台阿里妈妈基于自身广告业务自主研发,已经大规模部署应用在核心生产场景。
XDL整体上跟TensorFlow和PyTorch是同级的,它们很好地解决了目前已有开源深度学习框架分布式运行能力不足,以及大规模稀疏特征表征学习能力不足的问题。
XDL 采用了“桥接”的架构设计理念。
- github地址:https://github.com/alibaba/x-deeplearning