AI实战:推荐系统之影视领域用户画像——数据采集内容

前言


用户画像就是根据用户特征、业务场景和用户行为等信息,构建一个标签化的用户模型。

了解用户画像架构:

在这里插入图片描述

构建用户画像三部曲:

  • 一、数据收集

    数据收集主要包括用户行为数据、用户基础数据。

    下面是某跨境电商平台的例子:
    在这里插入图片描述

  • 二、搭建用户画像标签体系

    通过对用户行为数据进行分析和计算,为用户打上标签,可得到用户画像的标签建模,即搭建用户画像标签体系。

    标签建模主要是基于原始数据进行统计、分析和预测,从而得到事实标签、模型标签与预测标签。

  • 三、构建用户画像

    用户画像包含的内容并不完全固定,不同企业对于用户画像有着不同对理解和需求。根据行业和产品的不同,所关注的特征也有不同,但主要还是体现在基本特征、社会特征、偏好特征、行为特征等。
    在这里插入图片描述

    用户画像的核心是为用户打标签。即将用户的每个具体信息抽象成标签,利用这些标签将用户形象具体化,从而为用户提供有针对性的服务。



影视领域用户画像

  • 画像内容
    在这里插入图片描述

  • 信息挖掘

    登入行为 => 挖掘社会关系、社交网络

    消费行为 => 购买能力

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

szZack

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值