你一定不能错过的多模态大模型!阿里千问开源Qwen-VL!具备图文解读等能力

Qwen-VL是阿里基于Qwen-7B语言模型的视觉语言模型,经过预训练、多任务预训练和监督微调三阶段训练,表现出强大的视觉理解能力。在多项视觉语言理解基准测试中取得领先成绩,支持多语言、多图像输入,并在零样本学习和真实用户交互的指令遵循能力上表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. Qwen-VL简介

1.1. 介绍

Qwen-VL的多语言视觉语言模型系列,基于Qwen-7B语言模型。该模型通过视觉编码器和位置感知的视觉语言适配器,赋予语言模型视觉理解能力。

Qwen-VL采用了三阶段的训练流程,并在多个视觉语言理解基准测试中取得了领先的成绩。该模型支持多语言、多图像输入,具备细粒度的视觉理解能力。

另外,通过指令调优,生成了交互式的Qwen-VL-Chat模型,在现实世界用户行为的评估中展现出了优异的表现。总体而言,Qwen-VL系列模型在视觉语言理解任务上取得了显著的成果,并在开源社区中具有领先的地位。

1.2. 榜单排名情况(更新24 年3 月)

1.3. 主要特性

  1. Leading performance:在广泛的视觉理解基准测试中,Qwen-VLs取得了top-tier的准确率,相比参数量相近的模型具有明显优势。这种优越性能不仅覆盖了传统基准测试(如图像描述、问题回答、定位等),还包括一些最近引入的对话基准测试。
  2. Multi-lingual࿱
<think>好的,我现在需要帮助用户比较Qwen2-VLQwen-VL的区别。首先,我需要确认用户提供的引用内容。引用1提到了Qwen2-VL的特点,比如支持不同分辨率和长宽比的图片、长视频理解、作为智能体以及多语言支持,还提到架构上的改进,比如动态分辨率和多模态旋转位置嵌入。引用2是关于Qwen2-VL的部署步骤,可能对差异分析帮助不大,但需要注意是否有版本相关的信息。 用户的题是要了解这两个模型的主要差异。首先,我需要回忆或查找Qwen-VL的信息,可能用户之前了解过Qwen-VL,现在想看看升级版Qwen2-VL有什么改进。根据引用1,Qwen2-VL在视觉能力评估中表现更好,特别是在细节识别、推理、视频理解和实时聊天方面。这可能意味着Qwen-VL在这些方面相对较弱。 接下来,架构方面,Qwen2-VL延续了ViT加Qwen2的串联结构,但升级了动态分辨率和位置嵌入。动态分辨率处理可能让模型更灵活处理不同尺寸的图片,而多模态旋转位置嵌入可能提升处理长文本或多模态数据的能力。这些都是Qwen2-VL的改进点。 另外,引用1提到Qwen2-VL开源了2B和7B版本,而Qwen-VL可能有不同的参数规模?或者之前的版本是Qwen-VL,现在升级到Qwen2-VL,参数更大,比如72B的API版本。这可能说明模型规模上的扩展。 性能方面,Qwen2-VL在多个评估中表现优异,可能在基准测试中比Qwen-VL有更高的分数。应用场景方面,Qwen2-VL适合需要更高精度和复杂推理的任务,比如手机、机器人视觉智能体,而Qwen-VL可能适用于基础任务。 还需要注意多语言支持是否是Qwen2-VL新增的,或者是否有增强。比如,原来的Qwen-VL可能支持中文,而Qwen2-VL扩展到更多语言。 总结下来,主要差异可能包括:模型架构优化、处理能力(动态分辨率、视频理解)、性能提升、应用场景扩展、多语言支持以及模型规模的增加。需要将这些点分条列出,确保引用正确,比如引用1提到的内容作为支持。 最后,生成相关题时要围绕这些差异,比如性能对比、架构差异、适用场景等。</think>### Qwen2-VLQwen-VL 的主要差异对比 #### 1. **架构升级** - **Qwen2-VL**:延续了 ViT(Vision Transformer)加 Qwen2 的串联结构,**新增对原生动态分辨率的支持**,能处理不同尺寸和长宽比的图片;引入**多模态旋转位置编码(MRPE)**,增强了多模态对齐能力[^1]。 - **Qwen-VL**:基于早期版本的架构,可能受限于固定分辨率输入,对复杂多模态任务的支持较弱。 #### 2. **视觉理解能力** - **Qwen2-VL**:在细节识别(如小物体检测)、视觉推理(如复杂场景关系理解)、长视频理解(支持超过1分钟的视频)等方面表现显著提升,支持**实时多轮交互**(如聊天场景)。 - **Qwen-VL**:早期版本可能在长视频处理和细粒度推理任务中存在性能瓶颈。 #### 3. **应用场景扩展** - **Qwen2-VL**:定位为**视觉智能体**,可部署于手机、机器人等终端,支持更复杂的多模态交互(如文档解析、图文答)。 - **Qwen-VL**:早期版本更多聚焦于基础图文任务(如图像描述、简单答)。 #### 4. **多语言支持** - **Qwen2-VL**:强化了**多语言图文理解能力**,支持中、英、日、韩等语言的混合输入与生成。 - **Qwen-VL**:可能以中文为核心,其他语言支持有限。 #### 5. **模型规模与性能** - **Qwen2-VL**:开源了 **2B** 和 **7B** 参数版本,并提供 **72B API** 服务,在综合评估中视觉能力达到业界领先水平。 - **Qwen-VL**:早期版本参数规模较小(如 1.8B、7B),性能相对受限。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大F的智能小课

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值