SPO(Self-Supervised Prompt Optimization)自我监督Prompt提示优化的全景指南

HuggingFace 链接:https://huggingface.co/spaces/XiangJinYu/SPO  作者也与国内的 ModelScope 魔搭社区官方进行了合作,现在可以体验由 Deepseek-V3 和 Qwen-2.5-72B 等开源模型驱动的 SPO。

ModelScope 链接: https://modelscope.cn/studios/AI-ModelScope/SPO

在大语言模型(LLMs)日益普及的今天,提示(Prompt)的设计和优化成为了解锁其潜力的关键。然而,传统的提示优化方法往往依赖人工反馈或外部标注数据,既昂贵又难以扩展。为了解决这一问题,**SPO(Self-Supervised Prompt Optimization,自我监督提示优化)**应运而生。SPO 是一款面向大语言模型的自动化提示优化工具,其核心特点是无需外部监督,通过模型自身的输出信号实现高效优化。

一、SPO 的核心优势

SPO 的设计理念围绕四大核心优势展开,使其在提示优化领域脱颖而出:

  1. 超低成本:每个任务的优化成本仅为 $0.15,比传统方法高效 17.8 至 90.9 倍。

  2. 零监督依赖:无需任何人工标注或外部反馈,完全自我监督。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大F的智能小课

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值