1.熵用来表示所有信息量的期望。
2.相对熵又称KL散度,如果我们对于同一个随机变量 x 有两个单独的概率分布 P(x) 和 Q(x),我们可以使用 KL 散度(Kullback-Leibler (KL) divergence)来衡量这两个分布的差异。
3.交叉熵:
相对熵=p的熵+交叉熵。
在机器学习中,我们需要评估label和predicts之间的差距,使用KL散度刚刚好。由于KL散度中的前一部分恰巧就是p的熵,p代表label或者叫groundtruth,故−H(p(x))不变,故在优化过程中,只需要关注交叉熵就可以了,所以一般在机器学习中直接用用交叉熵做loss,评估模型。
cross_entropy交叉熵、相对熵
最新推荐文章于 2024-04-16 02:08:52 发布