1 递归实现逆序输出整数 (20分)
本题目要求读入1个正整数n,然后编写递归函数reverse(int n)实现将该正整数逆序输出。
输入格式:
输入在一行中给出1个正整数n。
输出格式:
对每一组输入,在一行中输出n的逆序数。
输入样例:
12345
输出样例:
54321
#include<stdio.h>
int reverse(int n)
{
int m;
m=n%10;
n/=10;
printf("%d",m);
return ((n==0)? 0:reverse(n));
}
int main()
{
int n;
scanf("%d",&n);
reverse(n);
printf("\n");
return 0;
}
2 二分查找 (20分)
输入n值(1<=n<=1000)、n个非降序排列的整数以及要查找的数x,使用二分查找算法查找x,输出x所在的下标(0~n-1)及比较次数。若x不存在,输出-1和比较次数。
输入格式:
输入共三行: 第一行是n值; 第二行是n个整数; 第三行是x值。
输出格式:
输出x所在的下标(0~n-1)及比较次数。若x不存在,输出-1和比较次数。
输入样例:
4
1 2 3 4
1
输出样例:
0
2
#include<iostream>
using namespace std;
int count=0;
int bsearch(int a[],int x,int low,int high){
int mid = (low+high)/2;
if(low > high){
mid = -1;
return mid;
}
if(a[mid]==x){
count++;
return mid;
}
else if(a[mid]>x){
count++;
bsearch(a,x,low,mid-1);
}
else{
count++;
bsearch(a,x,mid+1,high);
}
}
int main(){
int n,x;
cin >> n;
int a[n];
for(int i=0;i<n;i++){
cin >> a[i];
}
cin >> x;
int low = 0;
int high = n-1;
int index = bsearch(a,x,low,high);
cout << index << endl;
cout << count << endl;
return 0;
}
3 改写二分搜索算法 (20分)
题目来源:《计算机算法设计与分析》,王晓东
设a[0:n-1]是已排好序的数组,请改写二分搜索算法,使得当x不在数组中时,返回小于x的最大元素位置i和大于x的最小元素位置j。当搜索元素在数组中时,i和j相同,均为x在数组中的位置。
输入格式:
输入有两行:
第一行是n值和x值; 第二行是n个不相同的整数组成的非降序序列,每个整数之间以空格分隔。
输出格式:
输出小于x的最大元素的最大下标i和大于x的最小元素的最小下标j。当搜索元素在数组中时,i和j相同。 提示:若x小于全部数值,则输出:-1 0 若x大于全部数值,则输出:n-1的值 n的值
输入样例:
在这里给出一组输入。例如:
6 5
2 4 6 8 10 12
输出样例:
在这里给出相应的输出。例如:
1 2
#include<iostream>
using namespace std;
int bsearch(int a[],int x,int low,int high){
int mid = (low+high)/2;
if(x>a[mid-1] && x<a[mid])
cout << mid-1 << " " << mid <<endl;
else if(a[mid]==x){
cout << mid << " " << mid <<endl;
}
else if(a[mid]>x){
bsearch(a,x,low,mid-1);
}
else{
bsearch(a,x,mid+1,high);
}
}
int main(){
int n,x;
cin >> n >> x;
int a[n];
for(int i=0;i<n;i++){
cin >> a[i];
}
int low = 0;
int high = n-1;
if(x<a[0])
cout <<"-1 0"<<endl;
else if(x>a[high])
cout << n-1 << " " <<n<<endl;
else
bsearch(a,x,low,high);
return 0;
}
4 分形的递归输出 (20分)
分形,具有以非整数维形式充填空间的形态特征。通常被定义为“一个粗糙或零碎的几何形状,可以分成数个部分,且每一部分都(至少近似地)是整体缩小后的形状”,即具有自相似的性质。
一个盒状分形定义如下: 度为1的盒分形为:
X
度为2的盒分形为:
X X
X
X X
依次类推,如果B(n-1)表示n-1度的盒分形,则n度的盒分形递归定义如下:
B(n - 1) B(n - 1)
B(n - 1)
B(n - 1) B(n - 1)
请画出度为n的盒分形的图形
输入格式:
输入一系列度,每行给出一个不大于7的正整数。输入的最后一行以-1表示输入结束
输出格式:
对于每个用例,输出用’X’标记的盒状分形。在每个测试用例后输出包含一个短划线“-”的一行。
输入样例:
1
2
3
4
-1
输出样例:
注意:每行的空格请输出完整。
X
-
X X
X
X X
-
X X X X
X X
X X X X
X X
X
X X
X X X X
X X
X X X X
-
X X X X X X X X
X X X X
X X X X X X X X
X X X X
X X
X X X X
X X X X X X X X
X X X X
X X X X X X X X
X X X X
X X
X X X X
X X
X
X X
X X X X
X X
X X X X
X X X X X X X X
X X X X
X X X X X X X X
X X X X
X X
X X X X
X X X X X X X X
X X X X
X X X X X X X X
-
#include<iostream>
#include<cmath>
#include<string.h>
using namespace std;
#define N 730 //3^6=729
char a[N][N];
void print(int n,int x,int y){
if(n==1)
a[x][y]='X';
else{
int m=pow(3,n-2);//每个分形的小规模
print(n-1,x,y);//以左下角为基准,左下角
print(n-1,x,y+m*2);//左上角
print(n-1,x+m,y+m);//中间
print(n-1,x+m*2,y);//右下角
print(n-1,x+m*2,y+m*2);//右上角
}
}
int main(){
int length=pow(3,6);
for(int i=0;i<length;i++)
for(int j=0;j<length;j++)
a[i][j]=' ';
print(7,0,0);
int n;
cin>>n;
while(n!=-1){
int len=pow(3,n-1);
for(int i=0;i<len;i++){
for(int j=0;j<len;j++)
cout<<a[i][j];
cout<<endl;
}
cout<<"-"<<endl;
cin>>n;
}
return 0;
}
5 棋盘覆盖 (20分)
在一个2^k * 2k(k为正整数,k<=10,length=2k)个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为一特殊方格(其坐标为aa,bb,分别代表行坐标号和列坐标号),以及有四种L型骨牌(如下图)。求用若干块这种L型骨牌实现除该特殊点棋盘的全覆盖。(本题要求采用分治算法做)
输入格式:
输入三个数,分别是aa,bb,length.
输出格式:
输出整个棋盘。其中特殊方格填为0,然后铺棋盘的顺序为:先铺四个子棋盘交界的部分,然后递归的对每个子棋盘按照左上,右上,右下,左下的顺时针顺序铺满棋盘。每一块骨牌中三个方格数字相同,按照顺序标号,即第一块骨牌全标为1,第二块骨牌全标为2,…,以此类推。输出的每个数占4个场宽,右对齐。
输入样例:
1 1 4
表示:特殊格子为(1,1),棋盘有4行4列。
输出样例:
0 2 3 3
2 2 1 3
5 1 1 4
5 5 4 4
表示:先铺三个1(一块L型骨牌),再铺三个2,…,最后铺三个5.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
using namespace std;
#define N 1024
int Board[N][N];
int count = 1;
void ChessBoard(int tr,int tc,int dr,int dc,int length){ //tr,tc为坐标点;dr,dc为特殊点
if(length == 1){
return;
}
int t = count++;
int s = length/2;
if(dr<tr+s && dc<tc+s){ //在左上角
ChessBoard(tr,tc,dr,dc,s);
}
else{ //不在左上角,将左上角的右下角设为特殊
Board[tr+s-1][tc+s-1] = t;
ChessBoard(tr,tc,tr+s-1,tc+s-1,s);
}
if(dr<tr+s && dc>=tc+s){
ChessBoard(tr,tc+s,dr,dc,s);
}
else{
Board[tr+s-1][tc+s] = t;
ChessBoard(tr,tc+s,tr+s-1,tc+s,s);
}
if(dr>=tr+s && dc>=tc+s){
ChessBoard(tr+s,tc+s,dr,dc,s);
}
else{
Board[tr+s][tc+s] = t;
ChessBoard(tr+s,tc+s,tr+s,tc+s,s);
}
if(dr>=tr+s && dc<tc+s){
ChessBoard(tr+s,tc,dr,dc,s);
}
else{
Board[tr+s][tc+s-1] = t;
ChessBoard(tr+s,tc,tr+s,tc+s-1,s);
}
}
int main()
{
int aa,bb,length;
cin>>aa>>bb>>length;
memset(Board,0,sizeof(Board)); //将棋盘的所有值都赋值为0
ChessBoard(0,0,aa-1,bb-1,length);
for(int i=0; i<length; i++){
for(int j=0; j<length; j++)
printf("%4d",Board[i][j]);
cout<<endl;
}
return 0;
}
6 循环日程表 (20分)
设有N个选手进行循环比赛,其中N=2^M ,要求每名选手要与其他N−1名选手都赛一次,每名选手每天比赛一次,循环赛共进行N−1天,要求每天没有选手轮空。
输入格式:
输入:M(M<=7)。
输出格式:
输出:表格形式的比赛安排表。一行各数据间用一个空格隔开。
输入样例:
3
输出样例:
在这里给出相应的输出。例如:
1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7
3 4 1 2 7 8 5 6
4 3 2 1 8 7 6 5
5 6 7 8 1 2 3 4
6 5 8 7 2 1 4 3
7 8 5 6 3 4 1 2
8 7 6 5 4 3 2 1
说明,第一行为:1 2 3 4 5 6 7 8,1表示本行都是1号选手和其他选手的比赛,如第2个数为2(其下标可以看成1)表示第一天1号和2号比赛,第5个数为5(其下标可以看成4),表示1号和5号在第4天比赛。
#include <iostream>
using namespace std;
const int maxNum = 1 << 10; //1左移10位
int table[maxNum][maxNum];
void circulateSchedule(int row, int column, int n) {
if (n == 1) {
return;
}
int half = n / 2; // 将2^k*2^k的表格分成2^(k-1)*2^(k-1)的四个子表格
// 每个表格的左上角赋值
// 左上子表格等于右下子表格,右上子表格等于左下子表格
// 右上子表格等于左上子表格加上子表格大小
table[row + half][column + half] = table[row][column];
table[row][column + half] = table[row + half][column] = table[row][column] + half;
// 递归四个子表格
circulateSchedule(row, column, half);
circulateSchedule(row, column + half, half);
circulateSchedule(row + half, column, half);
circulateSchedule(row + half, column + half, half);
}
int main() {
int n = 1;
int M;
cin >> M;
for (int j = 0; j < M; j++)
n = n * 2;
table[0][0] = 1;
circulateSchedule(0, 0, n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
cout << table[i][j] << " ";
}
cout << endl ;
}
return 0;
}