算法_递归

1 递归实现逆序输出整数 (20分)

本题目要求读入1个正整数n,然后编写递归函数reverse(int n)实现将该正整数逆序输出。

输入格式:
输入在一行中给出1个正整数n。

输出格式:
对每一组输入,在一行中输出n的逆序数。

输入样例:

12345

输出样例:

54321
#include<stdio.h>
int reverse(int n)
{
	int m;
	m=n%10;	
	n/=10;
	printf("%d",m); 
	return ((n==0)? 0:reverse(n));
}
int main()
{
	int n;
	scanf("%d",&n);
	reverse(n);
    printf("\n");
	return 0;
}

2 二分查找 (20分)

输入n值(1<=n<=1000)、n个非降序排列的整数以及要查找的数x,使用二分查找算法查找x,输出x所在的下标(0~n-1)及比较次数。若x不存在,输出-1和比较次数。

输入格式:
输入共三行: 第一行是n值; 第二行是n个整数; 第三行是x值。

输出格式:
输出x所在的下标(0~n-1)及比较次数。若x不存在,输出-1和比较次数。

输入样例:

4
1 2 3 4
1

输出样例:

0
2
#include<iostream>
using namespace std;
int count=0;
int bsearch(int a[],int x,int low,int high){
    int mid = (low+high)/2;
    if(low > high){
        mid = -1;
        return mid;
    }
    if(a[mid]==x){
        count++;
        return mid;
    }
    else if(a[mid]>x){
        count++;
        bsearch(a,x,low,mid-1);
    }
    else{
        count++;
        bsearch(a,x,mid+1,high);
    }
}
int main(){
    int n,x;
    cin >> n;
    int a[n];
    for(int i=0;i<n;i++){
        cin >> a[i];
    }
    cin >> x;
    int low = 0;
    int high = n-1;
    int index = bsearch(a,x,low,high);
    cout << index << endl;
    cout << count << endl;
    return 0;
}

3 改写二分搜索算法 (20分)

题目来源:《计算机算法设计与分析》,王晓东

设a[0:n-1]是已排好序的数组,请改写二分搜索算法,使得当x不在数组中时,返回小于x的最大元素位置i和大于x的最小元素位置j。当搜索元素在数组中时,i和j相同,均为x在数组中的位置。

输入格式:
输入有两行:

第一行是n值和x值; 第二行是n个不相同的整数组成的非降序序列,每个整数之间以空格分隔。

输出格式:
输出小于x的最大元素的最大下标i和大于x的最小元素的最小下标j。当搜索元素在数组中时,i和j相同。 提示:若x小于全部数值,则输出:-1 0 若x大于全部数值,则输出:n-1的值 n的值

输入样例:
在这里给出一组输入。例如:

6 5
2 4 6 8 10 12

输出样例:
在这里给出相应的输出。例如:

1 2
#include<iostream>
using namespace std;

int bsearch(int a[],int x,int low,int high){
    int mid = (low+high)/2;
    if(x>a[mid-1] && x<a[mid])
        cout << mid-1 << " " << mid <<endl;
    else if(a[mid]==x){
        cout << mid << " " << mid <<endl;
    }
    else if(a[mid]>x){
        bsearch(a,x,low,mid-1);
    }
    else{
        bsearch(a,x,mid+1,high);
    }
}
int main(){
    int n,x;
    cin >> n >> x;
    int a[n];
    for(int i=0;i<n;i++){
        cin >> a[i];
    }
    int low = 0;
    int high = n-1;
    if(x<a[0])
        cout <<"-1 0"<<endl;
    else if(x>a[high])
        cout << n-1 << " " <<n<<endl;
    else
        bsearch(a,x,low,high);
    return 0;
}

4 分形的递归输出 (20分)

分形,具有以非整数维形式充填空间的形态特征。通常被定义为“一个粗糙或零碎的几何形状,可以分成数个部分,且每一部分都(至少近似地)是整体缩小后的形状”,即具有自相似的性质。

一个盒状分形定义如下: 度为1的盒分形为:

X

度为2的盒分形为:

X X
 X
X X

依次类推,如果B(n-1)表示n-1度的盒分形,则n度的盒分形递归定义如下:

B(n - 1)        B(n - 1)

        B(n - 1)

B(n - 1)        B(n - 1)

请画出度为n的盒分形的图形

输入格式:
输入一系列度,每行给出一个不大于7的正整数。输入的最后一行以-1表示输入结束

输出格式:
对于每个用例,输出用’X’标记的盒状分形。在每个测试用例后输出包含一个短划线“-”的一行。

输入样例:

1
2
3
4
-1

输出样例:
注意:每行的空格请输出完整。

X
-
X X
 X 
X X
-
X X   X X
 X     X 
X X   X X
   X X   
    X    
   X X   
X X   X X
 X     X 
X X   X X
-
X X   X X         X X   X X
 X     X           X     X 
X X   X X         X X   X X
   X X               X X   
    X                 X    
   X X               X X   
X X   X X         X X   X X
 X     X           X     X 
X X   X X         X X   X X
         X X   X X         
          X     X          
         X X   X X         
            X X            
             X             
            X X            
         X X   X X         
          X     X          
         X X   X X         
X X   X X         X X   X X
 X     X           X     X 
X X   X X         X X   X X
   X X               X X   
    X                 X    
   X X               X X   
X X   X X         X X   X X
 X     X           X     X 
X X   X X         X X   X X
-
#include<iostream>
#include<cmath>
#include<string.h>
using namespace std;
#define N 730   //3^6=729

char a[N][N];

void print(int n,int x,int y){
	if(n==1)
		a[x][y]='X';
	else{
		int m=pow(3,n-2);//每个分形的小规模
        
		print(n-1,x,y);//以左下角为基准,左下角
		print(n-1,x,y+m*2);//左上角
		print(n-1,x+m,y+m);//中间
		print(n-1,x+m*2,y);//右下角
		print(n-1,x+m*2,y+m*2);//右上角 
	}
}

int main(){
	int length=pow(3,6);
	for(int i=0;i<length;i++)
		for(int j=0;j<length;j++)
			a[i][j]=' ';
	print(7,0,0);
	int n;
	cin>>n;
	while(n!=-1){
		int len=pow(3,n-1);
		for(int i=0;i<len;i++){
			for(int j=0;j<len;j++)
				cout<<a[i][j];
			cout<<endl;
		}
		cout<<"-"<<endl;
		cin>>n;
	}
	return 0;
}

5 棋盘覆盖 (20分)

在一个2^k * 2k(k为正整数,k<=10,length=2k)个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为一特殊方格(其坐标为aa,bb,分别代表行坐标号和列坐标号),以及有四种L型骨牌(如下图)。求用若干块这种L型骨牌实现除该特殊点棋盘的全覆盖。(本题要求采用分治算法做)
在这里插入图片描述
输入格式:
输入三个数,分别是aa,bb,length.

输出格式:
输出整个棋盘。其中特殊方格填为0,然后铺棋盘的顺序为:先铺四个子棋盘交界的部分,然后递归的对每个子棋盘按照左上,右上,右下,左下的顺时针顺序铺满棋盘。每一块骨牌中三个方格数字相同,按照顺序标号,即第一块骨牌全标为1,第二块骨牌全标为2,…,以此类推。输出的每个数占4个场宽,右对齐。

输入样例:

1 1 4

表示:特殊格子为(1,1),棋盘有4行4列。

输出样例:

   0   2   3   3
   2   2   1   3
   5   1   1   4
   5   5   4   4

表示:先铺三个1(一块L型骨牌),再铺三个2,…,最后铺三个5.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
using namespace std;
#define N 1024

int Board[N][N];
int count = 1;

void ChessBoard(int tr,int tc,int dr,int dc,int length){    //tr,tc为坐标点;dr,dc为特殊点
	if(length == 1){
		return;
	}
	int t = count++;
	int s = length/2;
	if(dr<tr+s && dc<tc+s){         //在左上角
		ChessBoard(tr,tc,dr,dc,s);
	}
	else{                           //不在左上角,将左上角的右下角设为特殊
		Board[tr+s-1][tc+s-1] = t;
		ChessBoard(tr,tc,tr+s-1,tc+s-1,s);
	}
    
	if(dr<tr+s && dc>=tc+s){
		ChessBoard(tr,tc+s,dr,dc,s);
	}
	else{
		Board[tr+s-1][tc+s] = t;
		ChessBoard(tr,tc+s,tr+s-1,tc+s,s);
	}
    
	if(dr>=tr+s && dc>=tc+s){
		ChessBoard(tr+s,tc+s,dr,dc,s);
	}
	else{
		Board[tr+s][tc+s] = t;
		ChessBoard(tr+s,tc+s,tr+s,tc+s,s);
	}
    
	if(dr>=tr+s && dc<tc+s){
		ChessBoard(tr+s,tc,dr,dc,s);
	}
	else{
		Board[tr+s][tc+s-1] = t;
		ChessBoard(tr+s,tc,tr+s,tc+s-1,s);
	}
}

int main()
{
	int aa,bb,length;
	cin>>aa>>bb>>length;
	memset(Board,0,sizeof(Board)); //将棋盘的所有值都赋值为0 
	ChessBoard(0,0,aa-1,bb-1,length);
	for(int i=0; i<length; i++){
		for(int j=0; j<length; j++)
			printf("%4d",Board[i][j]);
		cout<<endl;
	}
    return 0;
}

6 循环日程表 (20分)

设有N个选手进行循环比赛,其中N=2^​M​​ ,要求每名选手要与其他N−1名选手都赛一次,每名选手每天比赛一次,循环赛共进行N−1天,要求每天没有选手轮空。

输入格式:
输入:M(M<=7)。

输出格式:
输出:表格形式的比赛安排表。一行各数据间用一个空格隔开。

输入样例:

3

输出样例:
在这里给出相应的输出。例如:

1 2 3 4 5 6 7 8 
2 1 4 3 6 5 8 7 
3 4 1 2 7 8 5 6 
4 3 2 1 8 7 6 5 
5 6 7 8 1 2 3 4 
6 5 8 7 2 1 4 3 
7 8 5 6 3 4 1 2 
8 7 6 5 4 3 2 1 

说明,第一行为:1 2 3 4 5 6 7 8,1表示本行都是1号选手和其他选手的比赛,如第2个数为2(其下标可以看成1)表示第一天1号和2号比赛,第5个数为5(其下标可以看成4),表示1号和5号在第4天比赛。

#include <iostream>
using namespace std;

const int maxNum = 1 << 10;  //1左移10位
int table[maxNum][maxNum];

void circulateSchedule(int row, int column, int n) {
    if (n == 1) {
        return;
    }
    int half = n / 2;   // 将2^k*2^k的表格分成2^(k-1)*2^(k-1)的四个子表格
    
    // 每个表格的左上角赋值
    // 左上子表格等于右下子表格,右上子表格等于左下子表格
    // 右上子表格等于左上子表格加上子表格大小
    table[row + half][column + half] = table[row][column];
    table[row][column + half] = table[row + half][column] = table[row][column] + half;
    
    // 递归四个子表格
    circulateSchedule(row, column, half);
    circulateSchedule(row, column + half, half);
    circulateSchedule(row + half, column, half);
    circulateSchedule(row + half, column + half, half);
}

int main() {
    int n = 1;
    int M;
    cin >> M;
    for (int j = 0; j < M; j++)
        n = n * 2;
    table[0][0] = 1;
    circulateSchedule(0, 0, n);
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            cout << table[i][j] << " ";
        }
        cout << endl ;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

玳宸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值