旋转图像
题目:
给定一个 n × n 的二维矩阵表示一个图像。
将图像顺时针旋转 90 度。
说明:
你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。
示例1:
给定 matrix =
[
[1,2,3],
[4,5,6],
[7,8,9]
],
原地旋转输入矩阵,使其变为:
[
[7,4,1],
[8,5,2],
[9,6,3]
]
示例2:
给定 matrix =
[
[ 5, 1, 9,11],
[ 2, 4, 8,10],
[13, 3, 6, 7],
[15,14,12,16]
],
原地旋转输入矩阵,使其变为:
[
[15,13, 2, 5],
[14, 3, 4, 1],
[12, 6, 8, 9],
[16, 7,10,11]
]
解题思路:
最直接的想法是先转置矩阵,然后翻转每一行。这个简单的方法已经能达到最优的时间复杂度O(N^2)
复杂度分析:
- 时间复杂度:O(N^2)
- 空间复杂度:O(1),由于旋转操作时就地完成的
代码:
class Solution(object):
def rotate(self, matrix):
"""
:type matrix: List[List[int]]
:rtype: None Do not return anything, modify matrix in-place instead.
"""
n=len(matrix[0])
for i in range(n):
for j in range(i,n):
matrix[j][i],matrix[i][j]= matrix[i][j],matrix[j][i]
for i in range(n):
matrix[i].reverse()