Invitation Cards poj1511(优先队列+邻接表+dijk)

做了这个题我突然发现理解算法是思想,不是模板,这个题因为怕超时,朋友都是用spfa做的,我用了dijk
不过不是模板,有点不一样,不过思想一样
题意:就是给你一个N个点的图,求1点到其他每个点最短路权值之和,然后再求反向最短路(其他所有点到1点最短距离)之和,输出两者之和。
代码:

#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
#define N 1000100
#define INF 0x3fffffff
struct node
{
    int u,v,next;
    long long w;
    bool operator<(const node t)const
    {
        return t.w<w;
    }
} e[N],e1[N];
long long dis[N],vis[N],dis1[N];
int first[N],first1[N];
int cnt,cnt1;
int n,m;
void init()
{
    memset(first,-1,sizeof(first));
    memset(first1,-1,sizeof(first1));
    memset(dis,0,sizeof(dis));
    memset(dis1,0,sizeof(dis1));
    cnt=0;
    cnt1=0;
}
void add(int u,int v,int w)//把一号点到其他店的路都存起来
{
    e[cnt].u=u;
    e[cnt].v=v;
    e[cnt].next=first[u];
    e[cnt].w=w;
    first[u]=cnt++;
}
void add1(int u,int v,int w)//把其他点到一号点的路存起来
{
    e1[cnt1].u=u;
    e1[cnt1].v=v;
    e1[cnt1].next=first1[v];
    e1[cnt1].w=w;
    first1[v]=cnt1++;
}
priority_queue<node> que;
int main()
{
    node cur,nwnode;
    int t,v,u;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        init();
        for(int i=0; i<m; i++)
        {
            int x,y,key;
            scanf("%d%d%d",&x,&y,&key);
            add(x,y,key);
            add1(x,y,key);
        }
        memset(vis,0,sizeof(vis));
        while(!que.empty()) que.pop();
        for(int i=first[1]; i!=-1; i=e[i].next)
        {
            que.push(e[i]);
        }
        vis[1]=1;
        while(!que.empty())//一号点到其他点的最短路
        {                  //这个优先队列每次找到最小的路弹出,然后更改dis中的值,相当于松弛操作
                        //所以只要做好标记,表明这个点已经判断过就好,dijk用的就是贪心思想,每次找到最小值进行松弛,优先队列刚好可以完成这个操作
                        //例如1 3 2,1 2 2,2 3 3,那么弹出的一定是1 3 2这组数据,所以1到3的对短路就是2
            cur=que.top();
            que.pop();
            v=cur.v;
            if(vis[v]==1) continue;
            dis[v]=cur.w;
            vis[v]=1;
            for(int i=first[v]; i!=-1; i=e[i].next)
            {
                if(vis[e[i].v]==0)
                {
                    nwnode=e[i];
                    nwnode.w+=cur.w;
                    que.push(nwnode);
                }
            }
        }
        memset(vis,0,sizeof(vis));
        while(!que.empty()) que.pop();
        for(int i=first1[1]; i!=-1; i=e1[i].next)
            que.push(e1[i]);
        vis[1]=1;
        while(!que.empty())//这个是其他点到一号点
        {
            cur=que.top();
            que.pop();
            if(vis[cur.u]==1) continue;
            dis1[cur.u]=cur.w;
            vis[cur.u]=1;
            for(int i=first1[cur.u]; i!=-1; i=e1[i].next)
            {
                if(vis[e1[i].u]==0)
                {
                    nwnode=e1[i];
                    nwnode.w+=cur.w;
                    que.push(nwnode);
                }
            }
        }
        long long sum=0;
        for(int i=2; i<=n; i++)
            sum+=dis[i]+dis1[i];
        printf("%lld\n",sum);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值