SVD学习:压缩图像(opencv)

奇异值分解在图像处理中有着重要应用。假定一幅图像有n∗n个像素,如果将这n^2个数据一起传送,往往会显得数据量很大。因此我们希望能够改传送另外一些比较少的数据,在接收端利用这些数据重构原图像。 
假定对矩阵A进行奇异值分解,便得到A=UΣV^2,其中,奇异值从小到大的顺序排列。如果从中选取k个大奇异值以及这些对应的左右奇异向量逼近原图像,便可以共使用k(2n+1)个数值取代原来的n∗n个图像数据。 
图像的压缩比率 :

                                                                            

#include <iostream>
#include <opencv2\opencv.hpp>
using namespace std;
using namespace cv;
int main()
{
	Mat image = imread("..\\image\\keliamoniz1.jpg", 0);//以灰度图打开:640*480
	Mat temp(image.size(), CV_32FC1, Scalar(0));
	image.convertTo(image, CV_32FC1);

	Mat U, W, V;
	//W:1*480
	//U:480*480
	//V:640*480
	SVD::compute(image, W, U, V);//opencv得到的V与MATLAB相比已经经过转置了,要想再转置一遍可以用V=V.t();

	//w:480*480
	Mat w(image.rows, image.rows, CV_32FC1, Scalar(0));//opencv进行SVD分解后得到的奇异值W不是放入对角矩阵,而是一个列向量中,所以需要自己将其变换为对角矩阵
	
	int k = 50;
	float radio = (float)(640 * 480) / (float)(k*(480 + 640 + 1));

	for (int i = 0; i < k; i++)
		w.ptr<float>(i)[i] = W.ptr<float>(i)[0];

	temp = U*w*V;

	image.convertTo(image, CV_8UC1);
	temp.convertTo(temp, CV_8UC1);
	cout << "k = " << k << ",\t" << "radio = " << radio << endl;

	return 0;
}

 k = 50, radio = 5.48082

发布了362 篇原创文章 · 获赞 109 · 访问量 18万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览