RFdiffusion:De novo design of protein structure and function with RFdiffusion(蛋白质扩散设计)

ICLR-2023

Main Method: Diffusion

Pytorch code: https://github.com/RosettaCommons/RFdiffusion

literatures:https://www.nature.com/articles/s41586-023-06415-8

Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim, Helen E. Eisenach, Woody Ahern, Andrew J. Borst, Robert J. Ragotte, Lukas F. Milles, Basile I. M. Wicky, Nikita Hanikel, Samuel J. Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham Venkatesh, Isaac Sappington, Susana Vázquez Torres, Anna Lauko, Valentin De Bortoli, Emile Mathieu, Sergey Ovchinnikov, Regina Barzilay, Tommi S. Jaakkola, Frank DiMaio, Minkyung Baek & David Baker


目录

1. Introduction

1.1 Background

1.2 Definition

2. Motivation

2.1 传统的蛋白质设计流程

3. Method

3.1 引文

3.1 加噪​编辑

3.2 去噪​编辑

4. Experiments

5. Other(环境配置)

  作者视频讲解:RFDiffusion: Accurate protein design using structure prediction and diffusion ge_哔哩哔哩_bilibili

1. Introduction

1.1 Background

基于扩散模型的人工智能生成内容(AIGC)正在内容创作领域引起巨大影响,这也给生物学家带来了新的启示:能够更准确地设计全新且从未存在过的蛋白质

华盛顿大学计算生物科学家Baker是蛋白质设计领域的领军人物,他领导的团队在AlphaFold2模型发布之前,提出的蛋白质预测方法RoseTTAFold一直是学界的主流模型。如今,Baker实验室走在蛋白质设计的前沿,于2022年12月发布了最新的RFdiffusion(RoseTTAFold Diffusion)模型。该模型创新地将扩散模型应用于蛋白质设计中,根据用户输入的要求,从简单的分子规格出发,设计出不同、复杂和具有功能性的蛋白质。通过对数百种新设计的蛋白质进行结构和功能实验,团队证明了RFdiffusion模型的有效性和泛化性能。

1.2 Definition

RFdiffusion(RF:Rosetta Fragment,Posted December 10, 2022.)是一种基于深度学习的蛋白质骨架设计方法。它通过微调RoseTTAFold结构预测网络,在蛋白质结构去噪任务上进行训练,从而得到了能够生成蛋白质主链生成模型

2. Motivation

2.1 传统的蛋白质设计流程

传统的蛋白质设计流程:蛋白质骨架设计->序列设计->模拟筛选->实验测定

  1. 拥有基于已有的蛋白质骨架,这些骨架可能蕴含着特定的活性位点等信息,而这些位点赋予酶以独特的功能和特性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值