RFdiffusion 工作机制介绍

RFDiffusion 是一种基于扩散模型和深度神经网络的框架,结合了 RoseTTAFold 模型和扩散过程,用于生成符合目标功能的蛋白质结构。以下是其工作机制的分解和解释:

1. 框架的核心组成部分

  • RoseTTAFold 模型
    RoseTTAFold 是一种深度神经网络,用于蛋白质结构预测。它通过输入序列和配体约束,生成蛋白质的三维原子坐标或残基之间的距离矩阵。

    • 它在 RFDiffusion 中用于构建蛋白质结构框架推断残基之间的关系
    • 其核心是对氨基酸序列之间的关系建模,学习分子内的物理和化学约束。
  • 扩散模型
    扩散模型是一种生成式模型,模拟数据逐渐退化和复原的过程。它学习如何将噪声数据逐步还原到目标分布,从而生成新数据。

    • 在 RFDiffusion 中,扩散过程被设计为在蛋白质空间中生成新的原子坐标或重建结构。
  • Sampler 类
    Sampler 是控制采样过程的核心组件,负责结合扩散模型与 RoseTTAFold,逐步生成符合目标特性的蛋白质结构。

2. 主要算法步骤

(1) 初始化:定义扩散过程

扩散模型在蛋白质生成中的目标是:

  • 从随机噪声(或模糊结构)中生成蛋白质的三维坐标。
  • 利用扩散步长逐步修正噪声。

定义扩散过程&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值