RFDiffusionAA 项目使用教程

RFDiffusionAA 项目使用教程

项目地址:https://gitcode.com/gh_mirrors/rf/rf_diffusion_all_atom

1. 项目介绍

RFDiffusionAA(RFDiffusion All Atom)是由baker-laboratory开发的一个开源项目,专注于使用扩散模型进行全原子蛋白质设计。该项目通过结合深度学习和分子动力学,能够生成高质量的蛋白质结构,特别适用于小分子结合蛋白的设计。

RFDiffusionAA的核心功能包括:

  • 使用扩散模型生成蛋白质结构
  • 支持小分子结合蛋白的设计
  • 提供预训练模型权重和容器,方便快速部署

2. 项目快速启动

2.1 环境准备

首先,确保你已经安装了Apptainer(以前称为Singularity)。如果没有安装,可以通过以下命令安装:

wget https://github.com/apptainer/apptainer/releases/download/v1.0.0/apptainer-1.0.0.tar.gz
tar -xzf apptainer-1.0.0.tar.gz
cd apptainer-1.0.0
./configure --prefix=/usr/local
make
sudo make install

2.2 克隆项目

使用以下命令克隆RFDiffusionAA项目:

git clone https://github.com/baker-laboratory/rf_diffusion_all_atom.git
cd rf_diffusion_all_atom

2.3 下载容器和模型权重

下载用于运行RFDiffusionAA的容器和模型权重:

wget http://files.ipd.uw.edu/pub/RF-All-Atom/containers/rf_se3_diffusion.sif
wget http://files.ipd.uw.edu/pub/RF-All-Atom/weights/RFDiffusionAA_paper_weights.pt

2.4 初始化子模块

初始化并更新Git子模块:

git submodule init
git submodule update

2.5 运行示例

以下是一个生成小分子结合蛋白的示例命令:

/usr/bin/apptainer run --nv rf_se3_diffusion.sif -u run_inference.py \
    inference.deterministic=True \
    diffuser.T=100 \
    inference.output_prefix=output/ligand_only/sample \
    inference.input_pdb=input/7v11.pdb \
    contigmap.contigs=['150-150'] \
    inference.ligand=OQO \
    inference.num_designs=1 \
    inference.design_startnum=0

3. 应用案例和最佳实践

3.1 小分子结合蛋白设计

RFDiffusionAA可以用于设计与特定小分子结合的蛋白质。例如,设计一个与OQO小分子结合的蛋白质,可以使用以下命令:

/usr/bin/apptainer run --nv rf_se3_diffusion.sif -u run_inference.py \
    inference.deterministic=True \
    diffuser.T=100 \
    inference.output_prefix=output/ligand_only/sample \
    inference.input_pdb=input/7v11.pdb \
    contigmap.contigs=['150-150'] \
    inference.ligand=OQO \
    inference.num_designs=1 \
    inference.design_startnum=0

3.2 蛋白质结构优化

RFDiffusionAA还可以用于优化现有蛋白质的结构。通过调整扩散步数和输出前缀,可以生成多个优化后的结构。

4. 典型生态项目

4.1 AlphaFold2

AlphaFold2是由DeepMind开发的蛋白质结构预测工具,RFDiffusionAA生成的蛋白质结构可以进一步使用AlphaFold2进行验证和优化。

4.2 ProteinMPNN

ProteinMPNN是一个用于蛋白质序列设计的工具,RFDiffusionAA生成的蛋白质结构可以通过ProteinMPNN生成对应的序列。

4.3 PyRosetta

PyRosetta是一个用于蛋白质结构建模和分析的工具包,RFDiffusionAA生成的蛋白质结构可以使用PyRosetta进行进一步的分析和优化。

通过结合这些工具,可以构建一个完整的蛋白质设计与优化工作流。

rf_diffusion_all_atom Public RFDiffusionAA repo rf_diffusion_all_atom 项目地址: https://gitcode.com/gh_mirrors/rf/rf_diffusion_all_atom

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郝言元

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值