深度学习(二):深度学习与神经网络学习笔记(手记)

下面的照片顺序可能与当时学习记录的顺序不一致。

1. 感知机模型,CNN模型的前身:

2. sigmoid激活函数:

3. 神经网络的前向传播与反向传播计算过程例子:

 4. 神经网络的前向传播与反向传播计算过程例子(续):

5. Relu、Softmax, Sigmod激活函数,mnist 、cifar10 CNN模型,以及Keras开发平台模型类型:

6. BatchNorm的概念以及 安装Tensorflow的一些流程:

7. 多层感知器模型以及卷积神经网络模型的参数个数计算

8. 多层感知器模型以及卷积神经网络模型的参数个数计算(续):

 9. LeNet(1998, Y,Lencun)模型图

10. AleNet模型框图:

11 ZFNet模型框图

12. 应变模型SSPNet模型

13. 卷积神经网络的加深模型VGG Net与Google Net

14. Google Net Inception V3模型

15. Tensorflow中一些数据结构类型

16. Tensorflow 中的卷积参数

17. 分类问题与回归问题以及深度学习的发展

18. 卷积神经网络的三大核心思想:局部感知、权值共享、下采样

19. Keras模型开发流程以及VOC2007图像数据集的文件结构

20. Keras 通用模型开发流程

21. 目标检测中的查全率与查准率概念:

22. 目标检测模型RCNN模型原理

23. 目标检测模型RCNN模型原理(续)

24. 目标检测 Fast RCNN模型

25.目标检测Faster RCNN模型

26. 循环神经网络中的自编码模型

27.  循环神经网络中的Attention机制

28.  目标检测DenseNet模型

29. 目标检测DenseNet模型(续)

30.  反向传播梯度计算中的链式法则

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值