下面的照片顺序可能与当时学习记录的顺序不一致。
1. 感知机模型,CNN模型的前身:
2. sigmoid激活函数:
3. 神经网络的前向传播与反向传播计算过程例子:
4. 神经网络的前向传播与反向传播计算过程例子(续):
5. Relu、Softmax, Sigmod激活函数,mnist 、cifar10 CNN模型,以及Keras开发平台模型类型:
6. BatchNorm的概念以及 安装Tensorflow的一些流程:
7. 多层感知器模型以及卷积神经网络模型的参数个数计算
8. 多层感知器模型以及卷积神经网络模型的参数个数计算(续):
9. LeNet(1998, Y,Lencun)模型图
10. AleNet模型框图:
11 ZFNet模型框图
12. 应变模型SSPNet模型
13. 卷积神经网络的加深模型VGG Net与Google Net
14. Google Net Inception V3模型
15. Tensorflow中一些数据结构类型
16. Tensorflow 中的卷积参数
17. 分类问题与回归问题以及深度学习的发展
18. 卷积神经网络的三大核心思想:局部感知、权值共享、下采样
19. Keras模型开发流程以及VOC2007图像数据集的文件结构
20. Keras 通用模型开发流程
21. 目标检测中的查全率与查准率概念:
22. 目标检测模型RCNN模型原理
23. 目标检测模型RCNN模型原理(续)
24. 目标检测 Fast RCNN模型
25.目标检测Faster RCNN模型
26. 循环神经网络中的自编码模型
27. 循环神经网络中的Attention机制
28. 目标检测DenseNet模型
29. 目标检测DenseNet模型(续)
30. 反向传播梯度计算中的链式法则