geneHapR常见使用问题
过去一年多时间里,很多人在学习、使用geneHapR进行单倍型分析,在使用过程中遇到了一些问题。对一些常见问题进行汇总如下,方面后来者学习。
如果本文无法找到您的问题,请在评论区进行留言,评论点赞数量越多,也可能被优先回答。
1. 交流沟通问题
1) 很多同学反映QQ群添加不上/搜索不到。
由于不明原因导致QQ群很多人搜索不到,目前QQ已停止使用,转为使用微信群。有意向加入geneHapR交流群的老师和同学请通过用户名搜索“suiyuanhongzhu”添加群主微信,拉你进群。
2) 更多沟通方式
可以使用邮件联系,作者邮箱为:zhang_renliang@163.com。
发现bug,除上述联系方式外,还可以在geneHapR项目主页创建issue ( gitee, github),以督促作者尽快解决。
2. 常见报错
2.1 vcf2hap()结果只有4行
数据中基因型确实或者杂合子太多了,将hetero_remove
、na_drop
两个参数设置成FALSE
即可。
2.2 hap_summary()替换数据里有5行,但数据有4…
这里需要检查你的hapResult
是否正常,如果hapResult
只有4行,请参照2.1解决。
问题原因:一般的hapResult至少有四行,即Chr|POS|ALLELE|INFO;如果只有这四行,后续测操作会有类似的报错;需要检查你的vcf内容是不是有缺失,另外参考help文档把去除杂合子和缺失基因型的两个参数改为FLASE或者去掉某几个杂合子比较多的位点。
如果这个原因导致,请联系作者。
2.3 样品数据不对
在分析一个基因单倍型的时候,共650份品种最后几种单倍型总和只有400多份。但是分析其他基因单倍型的时候,是正常的,就是650份品种最后几种单倍型的加和也是650。
一般是由于该基因/区间内存在基因型缺失或杂合基因型,解决方法参照2.1。
2.4 displayVarOnGeneModel()
报错信息:*** in hapSummary/hapResult was not found in gff
通常是由于染色体名称不对导致的,检查你的基因型文件中包含的染色体名称和gff注释文件中的染色体名称是否一致。
报错信息:There was no overlap between hapResult: ***-*** and gff ***-***.
通常是由于gff注释信息在给定区间内没有发现外显子或任何类型的注释。需要通过调整start
或end
扩大、移动给定区间大小;或者重新调整gff注释。
2.5 displayVarOnGeneModel()视窗的位置或大小不能是无限的
这个问题一般不会出现,如果遇到了这个问题请按照下面步骤操作。
1)把RStudio最大化
2)把绘图区尽量调大
3)使用R里面的设备(dev)tiff()
、pdf()
、jpeg()
、png()
等,将绘制结果直接输出到文件中
如果至此还解决不了,请更换电脑。
(重装能解决90%以上的问题,但换好的装备可以解决100%的问题)
3. geneHapR的安装问题
3.1 windows下的安装问题
经测试,在Win7、Win8、Win10、Win11下均可使用geneHapR进行单倍型分析。
如果你的电脑在安装时出现问题,请百度之。
如果实在解决不了,把R、RStudio卸载掉,重新安装。
如果还是解决不了,重装系统后,再尝试安装。
重启解决90%的电脑问题,重装系统可以解决**99.9%**的电脑问题。
3.2 linux和mac下的安装问题
Linux中安装geneHapR的依赖包需要安装很多依赖的库,相信使用Linux和mac的都不是小白,请根据报错信息百度之。
3.3 实在安装不上咋整
如果实在解决不了安装问题,这边勉为其难的为您提供有偿单倍型分析服务,周期为1~3个工作日。
4. 数据问题
4.1 示例数据哪里来
示例数据有几种来源途径:
1)geneHapR文章的附件;
2)geneHapR软件附带的数据;
3)OsGHD7基因的文章及其附件。
互联网是免费的,但时间是宝贵的。如果你实在找不到或者不想浪费时间去找免费数据,这边也可以有偿提供。
1)在线下载(5元/份)。
2)付费领取,凭付款截图领取(将付款截图发送至1205654509@qq.com)。
收款码在文章末尾。
4.2 做单倍型分析数据从哪里来
- 公开数据库
- 联系发表含有对应数据文章的PI索要数据
- 自己测序
- 自己调查性状
5. 文章引用问题
如果大家在自己的研究中使用了geneHapR,请引用原作者的文章。论文链接如下:
Zhang, R., Jia, G. & Diao, X. geneHapR: an R package for gene haplotypic statistics and visualization. BMC Bioinformatics 24, 199 (2023). https://doi.org/10.1186/s12859-023-05318-9
geneHapR已经被很多老师和同学们(科学家和未来的科学家)应用于他们的科学研究中,有些研究已经见刊(截至2024年9月1日被引24次),相信还有更多的研究正在进行/撰写/投稿中。预祝更多的研究文章早日见刊!
由于篇幅有限,仅列出部分引用geneHapR的文章:
期刊 | JCR分区/影响因子 | 文章 |
---|---|---|
Nucleic Acids Research | Q1/16.6 | Wang T, He W, Li X, et al. A rice variation map derived from 10 548 rice accessions reveals the importance of rare variants. Nucleic Acids Res. 2023 Nov 10;51(20):10924-10933. doi: 10.1093/nar/gkad840. PMID: 37843097; PMCID: PMC10639064. |
Frontiers in Plant Science | Q1/4.6 | Joshi B, Singh S, Tiwari GJ, et al. Genome-wide association study of fiber yield-related traits uncovers the novel genomic regions and candidate genes in Indian upland cotton (Gossypium hirsutum L.). Front Plant Sci. 2023 Oct 23;14:1252746 |
cell reports | Q1/8.8 | Zuo Y, Liu H, Li B, et al. The Idesia polycarpa genome provides insights into its evolution and oil biosynthesis. Cell Rep. 2024 Mar 26;43(3):113909. doi: 10.1016/j.celrep.2024.113909. Epub 2024 Mar 6. PMID: 38451814. |
Theoretical and Applied Genetics | Q1/4.4 | Zhang H, Tang S, Wang H, et al. Genetic diversity of grain yield traits and identification of a grain weight gene SiTGW6 in foxtail millet. Theor Appl Genet. 2024 Mar 16;137(4):84. doi: 10.1007/s00122-024-04586-0. PMID: 38493242. |
d
支付宝扫码支付: