向量基础

<script src="http://widgets.amung.us/classic.js" type="text/javascript"></script> <script type="text/javascript"> </script>

向量基础

 

定义

n维向量:一组n维实数。

 

标记

:表示n维向量

行向量:

列向量:

 

 

注意:

1. 向量是一个包含大小和方向的量。

2. 向量可以用来表示力,速度,位移等等。

3. 向量是各类工程问题的关键。

 

向量和标量的乘法

k:常量(标量)

 

 

向量的单位化

任何一个非零的向量都可以除以它的大小来转化成长度为1的单位向量。

 

举个列子:

 

 

 

向量模(大小,长度)的性质

 

 常数     向量

 

(a) 

(b) 

(c) 

(d) 

 

性质(d)的几何意义:

 

向量的内积(点乘)

例如:

那么它们的内积就是

 

注意:

(a)  内积后的结果是一个常数。

(b)  内积可以表示为矩阵的乘法。如下

 

定理

1.

2. 如果两个向量垂直,那么他们的内积等于零。反之亦然。

 

性质

(a) 

(b) 

(c) 

(d) 

(e) 

 

向量的投影

 

 

1.  上的投影的长度:

 

2.  在方向上的单位长度:

 

由上面的2个式子可以得到

由向量的加法又有:

 

向量的外积

 

如果有

那么

 

也可以表示为下面的形式

 

定理

 

向量外积的几何意义

从上图中可以看出,向量的外积也是个向量,并且垂直于进行外积运算的2个向量组成的平面。

从上图可以看到,这个平行四边形的面积

于是,可以根据这种几何性质计算出已知3个顶点坐标的三角形的面积,如下图

于是得到三角形的面积S

 

右手法则

那么

 

外积的性质

(a) 

(b) 

(c) 

(d) 

 

向量空间

 

向量空间是向量的集合,这些向量不仅满足向量的加法和标量乘法,还要满足下面的条件。

1.   (V是向量空间)

2.  存在"0"向量,使得:

3. 

4. 

5. 

 

线性组合

 

一组向量的加法和标量乘法的组合成为线性组合。

 

如果

那么称这些向量线性独立。

 

如果任意一个向量可以用一组向量线性表出如下

那么称为向量基。n是向量基的维数。如果向量基中所有向量的都是单位向量且两两相交,那么该向量基成为正交基。

 

原创文章,转载请注明出处

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张赐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值