瑞芯微:基于RK3568的深度估计模型部署

文章探讨了利用深度学习技术解决单目图像深度估计的挑战,强调了有监督学习的局限性以及使用精确设备获取深度真值的成本问题。此外,文中展示了如何使用RKNN进行模型量化部署,如RK3568平台上的模型转换和优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       根据单张图像估计深度信息是计算机视觉领域的经典问题,也是一项具有挑战的难题。由于单目图像的尺度不确定,传统方法无法计算深度值。

       随着深度学习技术的发展,该范式已经成为了估计单目图像的深度信息的一种解决方案。早期的深度估计方法大多是有监督的,即要求数据集包含单目图像和对应的深度真值支撑网络模型训练。

        要想让图像含深度真值非常困难,一般需要精密的深度测量设备和移动平台“捕获”。因此,高昂的成本导致数据集的数据量较小,也意味着有监督学习的深度估计方式不适用于大规模的工业场景。

        对于距离的计算,常用的算法就是单目测距,但传统算法有时候并不是很准确,因此需要深度学习去进行深度估计。

下面我们基于RK3568进行相应的部署:

量化:


import cv2
import numpy as np

from rknn.api import RKNN
import os

if __name__ == '__main__':

    platform = 'rk3566'
    exp = 'SHENDU'
    Width = 512
    Height = 256
    MODEL_PATH = './onnx_models/SHENDU.onnx'
    NEED_BUILD_MODEL = True
    # NEED_BUILD_MODEL = False
    im_file = './dog_bike_car_640x640.jpg'

    # Create RKNN object
    rknn = RKNN()

    OUT_DIR = "rknn_models"
    RKNN_MODEL_PATH = './{}/{}_rm_transpose.rknn'.format(OUT_DIR,exp+'-'+str(Width)+'-'+str(Height))
    if NEED_BUILD_MODEL:
        DATASET = './dataset.txt'
        rknn.config(mean_values=[[124, 116, 104]], std_values=[[58, 57, 57]], target_platform="rk3568")
        # Load model
        print('--> Loading model')
        ret = rknn.load_onnx(MODEL_PATH)
        if ret != 0:
            print('load model failed!')
            exit(ret)
        print('done')

        # Build model
        print('--> Building model')
        ret = rknn.build(do_quantization=True, dataset=DATASET)
        if ret != 0:
            print('build model failed.')
            exit(ret)
        print('done')

        # Export rknn model
        if not os.path.exists(OUT_DIR):
            os.mkdir(OUT_DIR)
        print('--> Export RKNN model: {}'.format(RKNN_MODEL_PATH))
        ret = rknn.export_rknn(RKNN_MODEL_PATH)
        if ret != 0:
            print('Export rknn model failed.')
            exit(ret)
        print('done')
    else:
        ret = rknn.load_rknn(RKNN_MODEL_PATH)

    rknn.release()

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrs.Gril

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值