在深度学习中,损失函数是用于衡量模型预测值与真实值之间的差异的函数。通过最小化损失函数,可以使模型的预测结果尽可能接近真实值。以下是几种常见的深度学习损失函数:
1.均方误差(Mean Squared Error,MSE):均方误差是最常用的回归任务的损失函数。它计算预测值与真实值之间的平方差的平均值。对于样本数量为N,预测值为y_pred,真实值为y_true,均方误差的计算公式为:MSE = (1/N) * Σ(y_pred - y_true)^2。
2.交叉熵损失(Cross Entropy Loss):交叉熵损失常用于分类任务中。它基于信息论中的概念,衡量模型输出概率分布与真实标签之间的差异。对于二分类任务,交叉熵损失的计算公式为:CE = - (y_true * log(y_pred) + (1-y_true) * log(1-y_pred));对于多分类任务,交叉熵损失的计算公式为:CE = - Σ(y_true * log(y_pred))。
3.对数损失(Log Loss):对数损失也常用于二分类任务中,特别适用于模型输出为概率值的情况。对数损失将预测值和真实值都取对数后计算差异,对于样本数量为N,预测值为y_pred,真实值为y_true,对数损失的计算公式为:Log Loss = (1/N) * Σ(- y_true * log(y_pred) - (1-y_true) * log(1-y_pred))。
4.Hinge损失:Hinge损失通常用于支持向量机(SVM)中,用于处理二分类任务。它可以促使模型生成较大的间隔,并鼓励正确分类。对于样本数量为N,预测值为y_pred,真实值为y_true,Hinge损失的计算公式为:Hinge Loss = (1/N) * Σ(max(0, 1-y_true*y_pred))。
5.KL散度(Kullback-Leibler Divergence):KL散度常用于衡量两个概率分布之间的差异。在深度学习中,KL散度常用于生成模型(如变分自编码器)中的损失函数。对于样本数量为N,预测分布为P,真实分布为Q,KL散度的计算公式为:KL(P||Q) = (1/N) * Σ(P * log(P/Q))。