多视角图像生成--Multi-View Image Generation from a Single-View

本文介绍了一种使用对抗网络从单视角图像生成多视角图像的方法。该技术与BeyondFaceRotation类似,采用coarsetofine策略进行图像转换。虽然生成的图像存在一些细节失真,但对于人脸图像的处理效果较好。此技术面临的挑战包括如何处理人体图像中因服装多样性导致的特征稳定性问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Multi-View Image Generation from a Single-View

https://www.arxiv.org/pdf/1704.04886

本文使用对抗网络将单视角图像转出多视角图像。和 Beyond Face Rotation 类似,都是 coarse to fine,只不过网络结构一个是并联一个是串联。

这里写图片描述

网络结构如下所示:
这里写图片描述

效果图如下:
这里写图片描述

这里写图片描述

由图像结果可以看出,细节还是有些失真。而 Beyond Face Rotation 对人脸的效果还是挺好的。
一个是只输出正脸照片,一个是输出多角度照片。这两个参数范围还是有比较大的差异的。
另一个就是特征问题了,人脸的特征还是比较明显的,通过利用人脸局部特征来增强正脸图像的细节。
但是对于整个人体,由于衣服的多样性,特征的稳定性就比较差了。

不过这种失真的效果应该是可以进一步改善的。深度学习的发展是日新月异的嘛。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值