车辆密度估计--Understanding Traffic Density from Large-Scale Web Camera Data

本文介绍两种算法用于从大规模网络摄像头数据中估计车辆密度:1)OPT-RC算法利用背景差分获取车辆运动区域,并通过学习不同区域的权重矩阵来估计密度;2)FCN-MT算法采用全卷积网络进行多任务学习,联合估计车辆密度图和车辆数量,以解决大型车辆在视图中占据较大面积导致计数误差的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Understanding Traffic Density from Large-Scale Web Camera Data
CVPR2017
https://arxiv.org/abs/1703.05868

本文介绍了两个算法用于车辆密度估计:1)OPT-RC 根据背景差得到车辆运动区域,对于图像的不同区域学习到一个对应的权值矩阵用于估计车辆密度
2)FCN-MT 使用 FCN 分割框架来进行车辆密度估计

这里写图片描述
车辆密度估计问题还是比较难的,类似于人群密度估计

Optimization Based Vehicle Density Estimation with RankConstraint(OPT-RC)
这里写图片描述

we propose a regression model to learn different weights for different blocks to increase the degrees of freedom on the weights, and embed geometry information
用一个回归模型来学习图像区域对应不同的密度估计权值矩阵,嵌入了几何信息

FCN Based Multi-Task Learning for Vehicle Counting (FCN-MT)
这里写图片描述

网络分为 convolution network, decovolution network , 将卷积层各个层的特征融合起来,输入到反卷积网络中进行特征图放大

the large buses/trucks (oversized vehicles) in close view induce sporadically large errors in the counting results. To solve this problem, we propose a deep multi-task learning framework based on FCN to jointly learn vehicle density map and vehicle count.
为了解决个别大型车辆在图像中占有大面积导致车辆数估计有大的错误,这里使用了多目标学习

  1. Experiments
    这里我们建立了一个数据库 WebCamT
    这里写图片描述
    这里写图片描述

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值