FastSAM 部署 rknn

  基于yolov8(ultralytics)工程导出的FastSAM的onnx模型,后处理和yolov8seg是一样的。

   模型和完整测试代码

1 FastSAM 导出 onnx

  导出onnx的方式有两种,一种使用FastSAM工程,一种是使用yolov8(ultralytics)工程。本篇博客使用yolov8工程进行导出onnx。导出FastSAM和导出yolov8seg需要修改的地方一样的。本示例使用的是FastSAM-s,效果不是很好。需要修改两个地方。

第一处修改:
在这里插入图片描述

        # 导出 onnx 增加
        y = []
        for i in range(self.nl):
            t1 = self.cv2[i](x[i])
            t2 = self.cv3[i](x[i])
            y.append(t1)
            y.append(t2)
        return y

第二处修改:
在这里插入图片描述

        # 导出 onnx 增加(修改)
        # mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2)  # mask coefficients
        mc = [self.cv4[i](x[i]) for i in range(self.nl)]
        x = self.detect(self, x)
        return x, mc, p

增加保存onnx代码:
在这里插入图片描述

        print("===========  onnx =========== ")
        import torch
        dummy_input = torch.randn(1, 3, 640, 640)
        input_names = ["data"]
        output_names = ["cls1", "reg1", "cls2", "reg2", "cls3", "reg3", "mc1", "mc2", "mc3", "seg"]
        torch.onnx.export(self.model, dummy_input, "./yolov8nseg_relu_80class_dfl.onnx", verbose=False, input_names=input_names, output_names=output_names, opset_version=12)
        print("======================== convert onnx Finished! .... ")

修改完以上运行如下代码:

from ultralytics import FastSAM
from ultralytics.models.fastsam import FastSAMPrompt

model = FastSAM('./weights/FastSAM-s.pt')
image_path = './images/test.jpg'
everything_results = model(image_path, retina_masks=True, imgsz=640, conf=0.4, iou=0.9)

2 onnx 测试效果

在这里插入图片描述

3 RKNN板端测试效果

rknn仿真测试效果
在这里插入图片描述

板端实际效果(颜色配的不是很好,凑合看)
在这里插入图片描述

模型输入分辨率640x640,使用芯片rk3588。
在这里插入图片描述

4 C++ 代码

【rknn 的 C++完整代码】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值