强化学习+神经网络来训练一个股票交易系统

本文利用强化学习和神经网络建立了一个股票交易系统,以2012~2015年的数据作为训练集,2015年为测试集。结果显示,该模型在测试期跑赢基准40个百分点,但在多次尝试优化和调整后,未能重现稳定的投资回报效果。这表明股市可能存在的可盈利模式难以捕捉,或者收益存在偶然性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介:
本文采用强化学习+神经网络的框架,训练一个股票交易系统,并在个股上进行了测试。
下面为详细记录:
上面这个图是一个强化学习的交易模型。这个图是out sample的交易结果。2012~2015年的数据为训练数据,2015为out sample测试。
红线为伊利股份的股价,蓝线为交易净值。跑赢基准40个百分点。
上面这个图显示的是模型在训练过程中的表现,在125个训练周期之后,模型能稳定的跑赢基准约40个百分点。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值