常数项级数敛散性判断常见反例(建议收藏)
1. ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n ∑n=1∞an收敛, ∑ n = 1 ∞ a n 2 \sum_{n=1}^{\infty} a_n^2 ∑n=1∞an2不一定收敛,反例
∑ n = 1 ∞ ( − 1 ) n 1 n \sum_{n=1}^{\infty}(-1)^n \frac{1}{\sqrt{n}} ∑n=1∞(−1)nn1
2.正项级数 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n ∑n=1∞an收敛,不一定有 l i m n → ∞ n a n = 0 \mathop{\rm lim}\limits_{n \to \infty}na_n=0 n→∞limnan=0,反例
a n = { 1 n , n = 1 , 4 , 9 , ⋯ , k 2 , ⋯ 1 n 2 , n 为其他自然数 a_n= \begin{cases}\frac{1}{n}, & n=1,4,9, \cdots, k^2, \cdots \\ \frac{1}{n^2} & , n \text { 为其他自然数 }\end{cases} an={n1,n21n=1,4,9,⋯,k2,⋯,n 为其他自然数
3. l i m n → ∞ a n b n = 1 \mathop{\rm lim}\limits_{n \to \infty}\frac{a_n}{b_n}=1 n→∞limbnan=1,且 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n ∑n=1∞an收敛,不一定有 ∑ n = 1 ∞ b n \sum_{n=1}^{\infty} b_n ∑n=1∞bn也收敛,反例
a n = ( − 1 ) n 1 n , b n = ( − 1 ) n 1 n + 1 n a_n=(-1)^n \frac{1}{\sqrt{n}}, b_n=(-1)^n \frac{1}{\sqrt{n}}+\frac{1}{n} an=(−1)nn1,bn=(−1)nn1+n1
4. ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n ∑n=1∞an收敛,并且 l i m n → ∞ b n = 1 \mathop{\rm lim}\limits_{n \to \infty} {b_n} = 1 n→∞limbn=1,不一定有 ∑ n = 1 ∞ a n b n \sum_{n=1}^{\infty} a_n b_n ∑n=1∞anbn也收敛,反例
a n = ( − 1 ) n 1 n a_n=(-1)^n \frac{1}{\sqrt{n}} an=(−1)nn1, b n = 1 + ( − 1 ) n 1 n {b_n}=1+(-1)^n\frac{1}{\sqrt{n}} bn=1+(−1)nn1
5.级数 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n ∑n=1∞an和 ∑ n = 1 ∞ b n \sum_{n=1}^{\infty} b_n ∑n=1∞bn均发散, a n ≤ c n ≤ b n , ∑ n = 1 ∞ c n a_n \leq c_n \leq b_n, \sum_{n=1}^{\infty} c_n an≤cn≤bn,∑n=1∞cn不一定发散,反例
a n = − 1 , b n = 1 , c n = 0 a_n=-1, b_n=1, c_n=0 an=−1,bn=1,cn=0
6.一般项趋于0的交错级数不一定收敛,反例
∑ n = 1 ∞ a n = 2 1 − 1 2 + 2 3 − 1 4 + 2 5 − 1 6 + ⋯ \sum_{n=1}^{\infty} a_n=\frac{2}{1}-\frac{1}{2}+\frac{2}{3}-\frac{1}{4}+\frac{2}{5}-\frac{1}{6}+\cdots ∑n=1∞an=12−21+32−41+52−61+⋯
7.若 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n ∑n=1∞an收敛,不一定有 ∑ n = 1 ∞ ( − 1 ) n a n n \sum_{n=1}^{\infty}(-1)^n \frac{a_n}{n} ∑n=1∞(−1)nnan也收敛,反例
a n = ( − 1 ) n ln ( n + 1 ) a_n=\frac{(-1)^n}{\ln (n+1)} an=ln(n+1)(−1)n
8.若 a n > 0 a_n>0 an>0,不一定有 ∑ n = 1 ∞ 1 n 1 + a n \sum_{n=1}^{\infty} \frac{1}{n^{1+a_n}} ∑n=1∞n1+an1收敛,反例
a n = 1 n a_n=\frac{1}{n} an=n1
9. ∑ n = 1 ∞ ( − 1 ) n a n \sum_{n=1}^{\infty}(-1)^n a_n ∑n=1∞(−1)nan条件收敛,不一定有 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n ∑n=1∞an发散,反例
∑ n = 1 ∞ a n = 1 + 0 + 0 − 1 2 + 0 + 0 + 1 3 + 0 + 0 − 1 4 + . . . \sum_{n=1}^{\infty} a_n=1+0+0-\frac{1}{2}+0+0+\frac{1}{3}+0+0-\frac{1}{4}+... ∑n=1∞an=1+0+0−21+0+0+31+0+0−41+...
∑ n = 1 ∞ a n = 1 + 1 2 − 1 3 − 1 4 + 1 5 + 1 6 − 1 7 − 1 8 + ⋯ \sum_{n=1}^{\infty} a_n=1+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}+\cdots ∑n=1∞an=1+21−31−41+51+61−71−81+⋯