常数项级数敛散性判断常见反例(建议收藏)

常数项级数敛散性判断常见反例(建议收藏)

1. ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n n=1an收敛, ∑ n = 1 ∞ a n 2 \sum_{n=1}^{\infty} a_n^2 n=1an2不一定收敛,反例

∑ n = 1 ∞ ( − 1 ) n 1 n \sum_{n=1}^{\infty}(-1)^n \frac{1}{\sqrt{n}} n=1(1)nn 1

2.正项级数 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n n=1an收敛,不一定有 l i m n → ∞ n a n = 0 \mathop{\rm lim}\limits_{n \to \infty}na_n=0 nlimnan=0,反例

a n = { 1 n , n = 1 , 4 , 9 , ⋯   , k 2 , ⋯ 1 n 2 , n  为其他自然数  a_n= \begin{cases}\frac{1}{n}, & n=1,4,9, \cdots, k^2, \cdots \\ \frac{1}{n^2} & , n \text { 为其他自然数 }\end{cases} an={n1,n21n=1,4,9,,k2,,n 为其他自然数 

3. l i m n → ∞ a n b n = 1 \mathop{\rm lim}\limits_{n \to \infty}\frac{a_n}{b_n}=1 nlimbnan=1,且 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n n=1an收敛,不一定有 ∑ n = 1 ∞ b n \sum_{n=1}^{\infty} b_n n=1bn也收敛,反例

a n = ( − 1 ) n 1 n , b n = ( − 1 ) n 1 n + 1 n a_n=(-1)^n \frac{1}{\sqrt{n}}, b_n=(-1)^n \frac{1}{\sqrt{n}}+\frac{1}{n} an=(1)nn 1,bn=(1)nn 1+n1

4. ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n n=1an收敛,并且 l i m n → ∞ b n = 1 \mathop{\rm lim}\limits_{n \to \infty} {b_n} = 1 nlimbn=1,不一定有 ∑ n = 1 ∞ a n b n \sum_{n=1}^{\infty} a_n b_n n=1anbn也收敛,反例

a n = ( − 1 ) n 1 n a_n=(-1)^n \frac{1}{\sqrt{n}} an=(1)nn 1, b n = 1 + ( − 1 ) n 1 n {b_n}=1+(-1)^n\frac{1}{\sqrt{n}} bn=1+(1)nn 1

5.级数 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n n=1an ∑ n = 1 ∞ b n \sum_{n=1}^{\infty} b_n n=1bn均发散, a n ≤ c n ≤ b n , ∑ n = 1 ∞ c n a_n \leq c_n \leq b_n, \sum_{n=1}^{\infty} c_n ancnbn,n=1cn不一定发散,反例

a n = − 1 , b n = 1 , c n = 0 a_n=-1, b_n=1, c_n=0 an=1,bn=1,cn=0

6.一般项趋于0的交错级数不一定收敛,反例

∑ n = 1 ∞ a n = 2 1 − 1 2 + 2 3 − 1 4 + 2 5 − 1 6 + ⋯ \sum_{n=1}^{\infty} a_n=\frac{2}{1}-\frac{1}{2}+\frac{2}{3}-\frac{1}{4}+\frac{2}{5}-\frac{1}{6}+\cdots n=1an=1221+3241+5261+

7.若 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n n=1an收敛,不一定有 ∑ n = 1 ∞ ( − 1 ) n a n n \sum_{n=1}^{\infty}(-1)^n \frac{a_n}{n} n=1(1)nnan也收敛,反例

a n = ( − 1 ) n ln ⁡ ( n + 1 ) a_n=\frac{(-1)^n}{\ln (n+1)} an=ln(n+1)(1)n

8.若 a n > 0 a_n>0 an>0,不一定有 ∑ n = 1 ∞ 1 n 1 + a n \sum_{n=1}^{\infty} \frac{1}{n^{1+a_n}} n=1n1+an1收敛,反例

a n = 1 n a_n=\frac{1}{n} an=n1

9. ∑ n = 1 ∞ ( − 1 ) n a n \sum_{n=1}^{\infty}(-1)^n a_n n=1(1)nan条件收敛,不一定有 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n n=1an发散,反例

∑ n = 1 ∞ a n = 1 + 0 + 0 − 1 2 + 0 + 0 + 1 3 + 0 + 0 − 1 4 + . . . \sum_{n=1}^{\infty} a_n=1+0+0-\frac{1}{2}+0+0+\frac{1}{3}+0+0-\frac{1}{4}+... n=1an=1+0+021+0+0+31+0+041+...
∑ n = 1 ∞ a n = 1 + 1 2 − 1 3 − 1 4 + 1 5 + 1 6 − 1 7 − 1 8 + ⋯ \sum_{n=1}^{\infty} a_n=1+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}+\cdots n=1an=1+213141+51+617181+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

新威考研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值