10大隐藏提示词,教你把Deepseek训练成精2025-02-05

第一个技巧
1赛博人格分裂,(启动人格分裂讨论模式+问题)
2阴阳怪气模式,(问题+笑死)毒舌属性
3触发预判模式,假设性问题(如果,,,会不会,,,)
4预言家模式,预判未来(如果,,,会发生什么)
5灵魂拷问模式,(①启动杠精模式②先写方案,再模拟杠精从*个角度狂喷,最后给出V2版方案),
6玄学编程(,,,带点蝉意)
7驯服转业话痨,(说人话!)
8人设粘贴术,
9启动老板思维(如果你是,,,你会怎么骂这个方案)
10过滤废话,(问题,+删掉所有正确的废话,只留能落地的建议)

10大隐藏提示词,教你把Deepseek训练成精!

第二个技巧
1.Deepsick会画思维导图,甘特图、鱼骨图。请让AI使用mermaid展现
2.成为AI原住民
3.倒反天罡
4.通用模板:角色,背景信息,输出的格式和要求
5.举个例子
6.涅橡皮泥一口气学会使用DeepSeek

### DeepSeek 数据分析 使用指南 和 最佳实践 #### 一、理解DeepSeek的数据处理能力 DeepSeek具备强的数据处理功能,能够高效地管理和解析规模数据集。这使得该平台非常适合于需要快速迭代和测试不同模型的企业和个人开发者[^3]。 #### 二、准备阶段:数据收集与预处理 在开始任何深入的数据挖掘之前,确保所使用的数据源既广泛又具有代表性非常重要。对于结构化表格形式的数据,应当清理缺失值并标准化数值范围;而对于非结构化的文本或其他媒体文件,则要通过诸如分词、去除停用词等方式来进行初步加工[^1]。 #### 三、探索性数据分析(EDA) 利用可视化工具和技术来直观展示数据特征是不可或缺的一环。比如绘制直方图查看分布情况、散点图观察变量间关系等方法可以帮助发现潜在模式以及异常点所在位置。此外,在此期间还可以尝试聚类算法找出隐藏群体特性[^2]。 #### 四、建立预测模型 当完成前期准备工作之后就可以着手构建机器学习或深度学习模型了。考虑到计算资源的有效利用率问题,建议先采用简单线性回归作为基线对比方案,再逐步引入复杂度更高的神经网络架构进行优化改进。值得注意的是,为了防止过拟合现象发生,务必重视交叉验证环节的设计。 #### 五、评估与调整 一旦训练完毕后的新颖模型诞生出来,紧接着便是对其性能进行全面评测的过程。除了常见的准确率指标外,还应关注召回率、F1分数等多个维度的表现差异。如果实际效果未能达到预期目标,则应回溯整个流程查找可能存在的漏洞之处加以修正完善。 ```python from sklearn.model_selection import train_test_split, cross_val_score from sklearn.linear_model import LinearRegression import pandas as pd # 假设df是一个已经加载好的DataFrame对象 X = df.drop('target', axis=1).values y = df['target'].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LinearRegression() scores = cross_val_score(model, X_train, y_train, cv=5) print(f'Cross-validation scores: {scores}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值