LangChain系列文章目录
01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南
02-玩转 LangChain Memory 模块:四种记忆类型详解及应用场景全覆盖
03-全面掌握 LangChain:从核心链条构建到动态任务分配的实战指南
04-玩转 LangChain:从文档加载到高效问答系统构建的全程实战
05-玩转 LangChain:深度评估问答系统的三种高效方法(示例生成、手动评估与LLM辅助评估)
大模型相关技术原理
01-【深度解析】从GPT-1到GPT-4:ChatGPT背后的核心原理全揭秘
02-【深度解析】DeepSeek-R1的五大隐藏提示词
文章目录
- LangChain系列文章目录
- 大模型相关技术原理
- 前言
- 一、人格分类讨论模式:让AI化身多面手
-
- 1.1 启动人格分类讨论模式
-
- 1.1.1 应用场景
- 1.1.2 示例
- 1.2 阴阳怪气模式:让AI变成毒舌专家
-
- 1.2.1 应用场景
- 1.2.2 示例输入
- 二、预判模式与预言家模式:未雨绸缪的决策支持
-
- 2.1 预判模式:风险评估与方案优化
-
- 2.1.1 应用场景
- 2.1.2 示例
- 2.2 预言家模式:未来趋势的深度洞察
-
- 2.2.1 应用场景
- 2.2.2 示例
- 三、灵魂拷问模式与诗意编程:直击方案漏洞与代码艺术
-
- 3.1 灵魂拷问模式:直击方案漏洞
-
- 3.1.1 应用场景
- 3.1.2 示例
- 3.2 诗意编程:让代码更具艺术性
-
- 3.2.1 应用场景
- 3.2.2 示例
- 四、说人话模式与人设粘贴术:复杂问题简单化与个性化回应
-
- 4.1 说人话模式:复杂问题简单化
-
- 4.1.1 应用场景
- 4.1.2 示例
- 4.2 人设粘贴术:打造个性化AI回应
-
- 4.2.1 应用场景
- 4.2.2 示例
- 五、老板思维模式与废话过滤模式:高层决策与高效执行
-
- 5.1 老板思维模式:模拟高层决策视角
-
- 5.1.1 应用场景
- 5.1.2 示例
- 5.2 废话过滤模式:直达核心建议
-
- 5.2.1 应用场景
- 5.2.2 示例
- 六、总结
前言
近年来,生成式AI的应用场景与技术范式发展迅猛。尤其是在构建不同任务时,推理型模型与聊天型模型的本质差异逐渐显现。聊天型模型(如传统GPT系列)往往强调流畅的对话与泛用性,致力于为用户提供自然的交流体验。而以DeepSeek-R1为代表的推理型模型则将核心聚焦在逻辑深度、领域适配与多模态交互能力上。二者的Promot设置逻辑、语义目标及模型架构均体现出截然不同的设计哲学。
在这篇文章中,将以DeepSeek-R1为例,揭示推理型模型的关键特性与设计思路。通过探索十大隐藏提示词的具体功能及其实际应用,我们将帮助开发者与研究者深入理解该模型在复杂场景中的价值。本文旨在为那些追求创新思维和极致推理的读者提供详实的参考,以便更好地挖掘这一先进模型的潜力。
一、人格分类讨论模式:让AI化身多面手
1.1 启动人格分类讨论模式
DeepSeek-R1模型支持“人格分类讨论模式”,这一功能允许模型在同一时间内扮演多个角色,对同一问题进行多角度分析。例如,当你输入“启动人格分类讨论模式,要不要做AI是产品”,模型会分别以产品经理、技术专家、财务分析师和用户体验专家的身份展开辩论。
1.1.1 应用场景
- 方案评估: 在制定复杂方案时,通过多角色辩论可以快速发现潜在问题并优化方案。
- 创意激发: 不同角色的碰撞能够激发出意想不到的创意火花。
- 决策支持: 在面对不确定性时,多角度分析能够提供更全面的决策依据。