链接:
http://blog.csdn.net/thefutureisour/article/details/8455342
最近在写自己的算法,其实就是对一些传统算法的改进。传统算法可以参考opecv的源代码。在阅读源代码的过程中,我慢慢领会到了opencv的强大之处,并不是因为它实现了各种算法,而是在于它对于基本数据结构的设计,是得其他人可以很方便的使用这些数据结构来实现自己的算法。在帮助手册中,已经对于这些数据结构有比较详细的描述了。今天我就为英语不好的孩子们服务一下,简单的介绍一下它们。
首先介绍2维点对Point_,它的是一个模板类。我们可以直接访问数据成员x,y。它不仅定了+、-、==、!=这4个基本的操作,还定义了点乘、叉乘等操作。特别的这个类还提供了inside函数来判断一个点是否在矩形区域内。此外,还定义了一些其他的类型转化函数,比如转化为1.X版本的CvPoint。
为了方便使用,opencv又对常用的类型进行了定义:
typedef Point_<int> Point2i;
typedef Point2i Point;
typedef Point_<float> Point2f;
typedef Point_<double> Point2d;
同理还有Point3_,只不过它是一个3维点(x,y,z)而已。它的常用类型是:
typedef Point3_<int> Point3i;
typedef Point3_<float> Point3f;
typedef Point3_<double> Point3d;
介绍完点,就可以介绍Size_了。它也是模板类。
typedef Size_<int> Size2i;
typedef Size2i Size;
typedef Size_<float> Size2f
Size能够访问的成员变量是height和width。还定义了area函数来求面积。其他的操作基本都是类型转化函数。
下来介绍Rect_模版类。它是由左上角点和长度、宽度定义的。在opecv中,一般定义为左开右闭区间。有意思的是,这个类竟然也提供了一个Rect+Point的函数,作用是对矩形的偏移,还有一个Rect + Size的函数,在左上角不变的情况下,重新调整矩形的大小。其他的操作还有与&和|,是求两个矩形的交集和并集。
除了基本的矩形之外,opecv还提供了一个可以旋转的矩形RotatedRect,它是由中心、变长、旋转角度决定的。你可以访问它的这三个成员,也可以使用points函数返回它的4个顶点,使用boundingRect求出它的外接矩形(非旋转),下面是一个例子:
下面介绍Matx类,这也是一个模板类,用来记录一些小的矩形。这些矩形在编译前大小就固定了:
typedef Matx<float, 1, 2> Matx12f;
typedef Matx<double, 1, 2> Matx12d;
...
typedef Matx<float, 1, 6> Matx16f;
typedef Matx<double, 1, 6> Matx16d;
typedef Matx<float, 2, 1> Matx21f;
typedef Matx<double, 2, 1> Matx21d;
...
typedef Matx<float, 6, 1> Matx61f;
typedef Matx<double, 6, 1> Matx61d;
typedef Matx<float, 2, 2> Matx22f;
typedef Matx<double, 2, 2> Matx22d;
...
typedef Matx<float, 6, 6> Matx66f;
typedef Matx<double, 6, 6> Matx66d;
如果要使用灵活的矩形,还是用Mat吧。
下面介绍Vec类,它其实是元素较少的向量。
typedef Vec<uchar, 2> Vec2b;
typedef Vec<uchar, 3> Vec3b;
typedef Vec<uchar, 4> Vec4b;
typedef Vec<short, 2> Vec2s;
typedef Vec<short, 3> Vec3s;
typedef Vec<short, 4> Vec4s;
typedef Vec<int, 2> Vec2i;
typedef Vec<int, 3> Vec3i;
typedef Vec<int, 4> Vec4i;
typedef Vec<float, 2> Vec2f;
typedef Vec<float, 3> Vec3f;
typedef Vec<float, 4> Vec4f;
typedef Vec<float, 6> Vec6f;
typedef Vec<double, 2> Vec2d;
typedef Vec<double, 3> Vec3d;
typedef Vec<double, 4> Vec4d;
typedef Vec<double, 6> Vec6d;
它支持加、减、数乘、相等、不等、求范数等运算。
Scalar_类其实是用Vec<tp,4>派生下来的,也就是说,它是一个4元组:typedef Scalar_<double> Scalar;
他通常用来传递像素。
Range类用来指定连续的子序列。比如矩阵的一部分,比较简单,我们直接看定义:
讲完这些简单的类型之后,我们看一个非常重要的类型;Mat。Mat是opencv中的一种非常重要的数据结构,当刚开始使用时,我仅仅把它当做一个储存图像的数据结构,后来才慢慢理解,它不仅可以储存二维矩阵,也可以储存高维矩阵,这在模式识别、机器学习中是非常常用的。对于这类问题,我们就没有必要自己手动分配内存了,直接使用它们就可以了。这个类的内容很多,但opencv的帮助手册,很好的帮我们理清的其中的内容。
其中的核心数据成员data的储存方式在前一篇博客《我的OpenCV学习笔记(23):Mat中实际数据是如何保存的》中已经讨论过了,这里只做一个补充,就是多维情况:
我们建立了一个3维数组,数组的每一维长度分别为4,5,6。这可以通过size来获得。由于每个第一维向量中包含5个第二维的数组,而每个第二维数组中又包含了6个第三维数组,所以第一维每增加一步,相当于整个地址移动了5*6.所以step[0],等于30.
下面我们主要是看看Mat提供的函数。
首先是构造函数,光构造函数就有很多种,这里介绍几种常用的方式:
1.使用(nrows, ncols, type),初始化2维矩阵
// 创建一个7*7的2通道浮点矩阵,通常这样的矩阵用来表示复矩阵
Mat M(7,7,CV_32FC2,Scalar(1,3));
//改变为100*60的15通道uchar矩阵,原先的数据将会被释放
M.create(100,60,CV_8UC(15));
创建高维矩阵
//创建100*100*100的3维矩阵
int sz[] = {100, 100, 100};
Mat bigCube(3, sz, CV_8U, Scalar::all(0));
下面是一些简单的对整行、整列的操作
// 第5行*3 + 第3行,这样的操作在线性代数中很常见
M.row(3) = M.row(3) + M.row(5)*3;
// 把第7列拷贝到第1列
// M.col(1) = M.col(7); // 不能这样写
Mat M1 = M.col(1);
M.col(7).copyTo(M1);
用源图像的一部分创建新图像
// 创建一个320*240的图像
Mat img(Size(320,240),CV_8UC3);
// 选择感兴趣区域
Mat roi(img, Rect(10,10,100,100));
// 将区域改为绿色,原图像也会发生修改
roi = Scalar(0,255,0);
B是A的[1,3)列,对B的修改会影响A
如果需要深拷贝,则使用clone方法。
对于初始化Mat,还有其他的一些方法:
比如Matlab风格的 zeros(), ones(), eye():
M += Mat::eye(M.rows, M.cols, CV_64F);
Mat M = (Mat_<double>(3,3) << 1, 0, 0, 0, 1, 0, 0, 0, 1);
如果是处理“外来”的数据,那么则在构造函数中加上data则会非常方便的将外来数据转化为Mat结构:
特别的,对于与opencv1.X中的IplImage结构的交互:
说完了,构造、初始化,应该讨论元素访问的方法,这个在之前的博客中也有提过《我的OpenCV学习笔记(二):操作每个像素》这里就不再重复了。