机器学习实战----信息增益、信息增益率和基尼指数

本文介绍了信息熵、信息增益和基尼指数在机器学习中的作用。信息熵用于度量不确定性,信息增益衡量特征分类能力但存在偏向性,信息增益率则校正了这一偏向,而基尼指数表示数据集的不纯度。在决策树构建中,通常会根据这些指标选择最优特征。总结中强调要结合数据特性选择合适的评估方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一 什么是信息熵

对信息的一种度量。

物品可以用重量度量,长度可以用尺子度量。那信息用什么度量呢?《机器学习实战》这本书的信息量是多少呢?用什么度量呢?直到1948年香农提出了“信息熵”的概念,才解决了对信息的量化度量问题。信息熵是消除不确定性所需信息量的度量。一件事情的信息熵越高说明它需要的信息越多,来消除它的不确定性。

二  信息增益

1 概念解析

通过名字也能猜测出来,添加了信息之后能增加多少收益。也就是说增加信息之后能减少多少不确定性。

条件熵:H(X|A) 在已知随机变量A的条件下随机变量Y的不确定性。

信息增益:特征A对数据集D的信息增益g(D,A),定义为集合D的经验熵H(D)与特征A给定的条件下D的经验熵H(D|A)之差

g(X,A)=H(X)-H(X|A)。由于特征A而使得对数据D的分类的不确定性减少的程度。显然,对于数据集而言,信息增益依赖于特征,不同的特征往往具有不同的信息增益,信息增益大的特征具有更强的分类能力。

2 举例计算

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值