机器学习实战----信息增益、信息增益率和基尼指数

本文介绍了信息熵、信息增益和基尼指数在机器学习中的作用。信息熵用于度量不确定性,信息增益衡量特征分类能力但存在偏向性,信息增益率则校正了这一偏向,而基尼指数表示数据集的不纯度。在决策树构建中,通常会根据这些指标选择最优特征。总结中强调要结合数据特性选择合适的评估方法。
摘要由CSDN通过智能技术生成

一 什么是信息熵

对信息的一种度量。

物品可以用重量度量,长度可以用尺子度量。那信息用什么度量呢?《机器学习实战》这本书的信息量是多少呢?用什么度量呢?直到1948年香农提出了“信息熵”的概念,才解决了对信息的量化度量问题。信息熵是消除不确定性所需信息量的度量。一件事情的信息熵越高说明它需要的信息越多,来消除它的不确定性。

二  信息增益

1 概念解析

通过名字也能猜测出来,添加了信息之后能增加多少收益。也就是说增加信息之后能减少多少不确定性。

条件熵:H(X|A) 在已知随机变量A的条件下随机变量Y的不确定性。

信息增益:特征A对数据集D的信息增益g(D,A),定义为集合D的经验熵H(D)与特征A给定的条件下D的经验熵H(D|A)之差

g(X,A)=H(X)-H(X|A)。由于特征A而使得对数据D的分类的不确定性减少的程度。显然,对于数据集而言,信息增益依赖于特征,不同的特征往往具有不同的信息增益,信息增益大的特征具有更强的分类能力。

2 举例计算

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值