pycharm配合Anaconda下虚拟环境运行CNN

一、安装配置工作

二、问题及解决办法

————————————————————————————————————————————

一、安装配置工作

执行本配置前现状:

本机安装的pycharm版本号5.05,本地python环境为2.7和3.6.3,在Anaconda中的环境是Base下python版本3.7,新建的tf-gpu-page环境下的python版本号是3.6.9。

 

前提条件是在tf-gpu-page虚拟环境下已经安装了完整的可以运行tensorflow的packages【调试的时候发现之前的tensorflow竟然没有安装,导致出现的问题很奇怪(反正没出现提示package not install)】。

 

在pycharm中可以在setting中配置interpreter,在5.05版本中存在一个问题是无法解决conda配置3.6及以上版本的编译器。而我的tensorflow又是配置在anaconda的虚拟环境中的,因此决定必须要升级pycharm工具。

 

执行安装配置过程:

首先在jetbrain官网下载pycharm软件,我下载的版本是pycharm with anaconda 2019.3。正常按照步骤完成安装工作,我会把安装的目录放在了E盘的jetbrain-install目录中,节约C盘空间。

完成安装需要执行激活,下述方案验证可行:

https://www.jianshu.com/p/07f7ab1c2e51

破解文件放在了百度云 ”jetbrain破解

### 如何在 PyCharm 中加载并运行 CNN 模型进行预测 要在 PyCharm 中加载并运行已训练的 CNN 模型进行预测,需完成以下几个方面的操作: #### 1. **准备开发环境** 确保安装了必要的依赖库。可以通过 Anaconda 创建虚拟环境,并安装 TensorFlow 和其他所需包。激活虚拟环境后,在终端输入以下命令: ```bash pip install tensorflow matplotlib numpy scikit-image ``` 此部分涉及的内容已在参考资料中有提及[^2]。 #### 2. **导入所需的 Python 库** 编写脚本时,需要先导入必要的模块以支持模型加载和图像处理等功能。以下是常见的导入语句: ```python import tensorflow as tf from tensorflow.keras.models import load_model import numpy as np from skimage.transform import resize ``` 这些工具用于加载模型、预处理图像以及执行预测任务。 #### 3. **加载已经保存的 CNN 模型** 假设之前使用 `model.save()` 方法保存了一个 Keras/TensorFlow 的 CNN 模型文件(通常为 `.h5` 或 `.pb` 文件),可以利用如下代码将其重新加载到内存中: ```python # 加载保存的模型 model_path = 'path_to_your_saved_model.h5' # 替换为你实际存储路径 loaded_model = load_model(model_path) print("Model loaded successfully!") ``` 上述方法适用于基于 MNIST 数据集或其他数据源构建的模型[^1]。 #### 4. **定义图像预处理函数** 为了使新图片能够被正确识别,必须对其进行标准化处理使其匹配原始训练数据的形式。例如对于 MNIST 集合来说,每张图像是灰度模式下的固定大小 (28×28 像素),因此任何待测样本都需要调整至相同规格。 ```python def preprocess_image(image): """将任意尺寸的 RGB 图像转换成适合网络输入的标准形式""" gray_img = image.convert('L') # 转化为单通道灰色图像 resized_img = resize(gray_img, (28, 28)) / 255.0 # 缩放至目标分辨率 & 归一化像素值范围 [0..1] reshaped_input = resized_img.reshape((1, 28, 28, 1)).astype(np.float32) return reshaped_input ``` 注意这里提到的具体数值可能依据具体项目而有所变化;如果采用的是 CIFAR-10,则应改为对应的颜色通道数与空间维度设置。 #### 5. **实施预测逻辑** 最后一步就是调用前面建立起来的一切组件来进行最终推断工作啦!下面展示了一段完整的例子流程: ```python if __name__ == '__main__': from PIL import Image test_image_filepath = './test_digit.png' img_instance = Image.open(test_image_filepath) processed_data = preprocess_image(img_instance) predictions = loaded_model.predict(processed_data)[0] predicted_label_index = int(tf.argmax(predictions).numpy()) confidence_score = float(max(predictions)) labels_map = {i: str(i) for i in range(10)} # 对于手写数字而言标签即为其本身字符表示法 result_message = f"The model predicts this is a '{labels_map[predicted_label_index]}', with probability of {confidence_score:.2f}." print(result_message) ``` 以上过程涵盖了从读取外部图形资源直至得出结论整个闭环链条上的各个环节要点说明。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值